Our PbS quantum dots have a fully crystalline inorganic core and are organically stabilized with an oleic acid coating, which makes their surface hydrophobic in nature. They exhibit high colloidal and thermal stability, as well as strong emissions with narrow fluorescence bands, owing to their small particle size distributions. These particles absorb all light in the UV, VIS and NIR, up to 900 nm. Their size-dependent absorption and emission properties make them suitable for different applications: such as, absorber materials in photovoltaics, detectors and photodiodes, and phosphors in IR-emitters (solid state lighting, SSL), among many others.
Legal Information
Fraunhofer CAN is a research division of the Fraunhofer IAP
CANdot is a registered trademark of Fraunhofer CAN
In contrast to traditional semiconductors, conjugated polymers provide ease of processing, low cost, physical flexibility and large area coverage. These active optoelectronic materials produce and harvest light efficiently in the visible spectrum. The same functions are required in the infrared
Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting
We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields
CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application
Jiao, J.;
Materials Science in Semiconductor Processing, 16(2), 435-440 (2013)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.