264091
Indium
rod, diam. 6 mm, ≥99.999% trace metals basis
Synonym(s):
Indium element
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
vapor pressure
<0.01 mmHg ( 25 °C)
Assay
≥99.999% trace metals basis
form
rod
resistivity
8.37 μΩ-cm
diam.
6 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
SMILES string
[In]
InChI
1S/In
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Quantity
20 g = 100 mm
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging.
Physical chemistry chemical physics : PCCP, 15(14), 5078-5083 (2013-03-02)
Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient
Optics express, 21 Suppl 1, A1-A6 (2013-02-15)
A wing-type imbedded electrodes was introduced into the lateral light emitting diode configuration (WTIE-LEDs) to reduce the effect of light shading of electrode in conventional sapphire-based LEDs (CSB-LEDs). The WTIE-LEDs with double-side roughened surface structures not only can eliminate the
Optics express, 21 Suppl 1, A190-A200 (2013-02-15)
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service