Skip to Content
Merck
All Photos(1)

Documents

915467

Sigma-Aldrich

LifeSupport

support slurry for FRESH bioprinting

Synonym(s):

support bath bioprinting

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352201
NACRES:
NA.23

Quality Level

sterility

sterile; irradiated

form

powder

color

white to off-white

Application

LifeSupport is the support slurry for FRESH bioprinting. FRESH stands for Freeform Reversible Embedding of Suspended Hydrogels. It is a 3D bioprinting technique using a thermoreversible support bath to enable deposition of hydrogels in complex 3D structure. Each LifeSupport printing kit comes with 5 units of 2 grams of sterile LifeSupport powder. One gram of powder hydrates to approximately 10 mL of FRESH support material.

Packaging

One kit contains 5 units of 2 grams product

Legal Information

LifeSupport is a trademark of Advanced BioMatrix, Inc.

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Thomas J Hinton et al.
Science advances, 1(9), e1500758-e1500758 (2015-11-26)
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary
Analysis and Classification of 3-D Printed Collagen-Bioglass Matrices for Cellular Growth Utilizing Artificial Neural Networks.
Schmitt T, et al
University Chemistry (2018)
Emerging Business Models Toward Commercialization of Bioprinting Technology.
Balakhovsky Y M, et al.
3D Printing and Biofabrication, 1-22 (2017)
In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold.
Maxson E L, et al.
Bioprinting, 16, e00059-e00059 (2019)
S Fox et al.
Biomedical materials (Bristol, England), 14(4), 041001-041001 (2019-02-23)
Human autologous bioengineered skin has been successfully developed and used to treat skin injuries in a growing number of cases. In current clinical studies, the biomaterial used is fabricated via plastic compression of collagen hydrogel to increase the density and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service