349275
Gold
foil, thickness 0.05 mm, 99.99% trace metals basis
Synonym(s):
Gold Powder, Gold black, Gold element
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Assay
99.99% trace metals basis
form
foil
resistivity
2.05 μΩ-cm, 0°C
thickness
0.05 mm
bp
2808 °C (lit.)
mp
1063 °C (lit.)
density
19.3 g/mL at 25 °C (lit.)
SMILES string
[Au]
InChI
1S/Au
InChI key
PCHJSUWPFVWCPO-UHFFFAOYSA-N
General description
Gold is one of the most popular materials to be used for neutron flux monitoring mainly because it possesses a large thermal cross section for neutron capture (197Au(η, γ) 198Au. Gold has the half-life of 2.7 days. Reports show that the rate of dissolution of Au is very fast in SnPb solder.
Application
Gold based neutron flux monitors may use gold foils. Au foils may be used to form a AuSn/Au joint system for opto-electronic chips. Modified gold foil electrode may be used to study heterogeneous electron transfer properties of biological electron transfer proteins.3 Electrodeposited polycrystalline palladium-nickel alloy on gold foils may be investigated for the enhanced catalytic behavior of the alloy.
Quantity
600 mg = 25 × 25 mm; 2.4 g = 50 × 50 mm
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Study of wetting reaction between eutectic AuSn and Au foil.
Journal of Electronic Materials, 35, 28-34 (2006)
Performance and comparison of gold-based neutron flux monitors.
Gold Bulletin, 45, 17-22 (2012)
A kinetic study of oxygen reduction reaction on palladium-nickel alloy surfaces.
Electrochemical Society Transactions, 6(25), 139-144 (2008)
Journal of nanoscience and nanotechnology, 13(5), 3711-3714 (2013-07-19)
The crystallization of Au/glass ultrathin films for surface plasmon resonance (SPR) biosensor has been studied using synchrotron X-ray scattering and field emission scanning electron microscope. In films thinner than 30 nm, crystallized Au grains with [111] preferred orientation were formed
Midas touch in cardiology.
European heart journal, 34(20), 1463-1464 (2013-07-11)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service