Saltar al contenido
Merck

917737

Sigma-Aldrich

NanoFabTx materials screening kit

for synthesis of polymeric nanoparticles

Sinónimos:

Non-PEGylated drug delivery formulation, PCL, PLA, PLGA

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

UNSPSC Code:
12161503
NACRES:
NA.23

description

Kit components :
PLGA-Nano (907782-500mg)
PLGA-Nano75 (916382-500mg)
PLA-Nano (910996-500mg)
PCL-Nano (916382-500mg)
Stabilizer - P (913448-10g)

Quality Level

application(s)

advanced drug delivery

General description

NanoFabTx formulation kits and lipid mixes enable users to encapsulate a wide variety of therapeutic drug molecules for targeted or extended drug delivery without the need for lengthy trial-and-error optimization. NanoFabTx kits provide an easy to use toolkit for encapsulating a variety of therapeutics in nanoparticles, microparticles, or liposomes. Drug encapsulated particles synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery and vaccine delivery.

Application

The NanoFabTx materials screening kit, for synthesis of polymeric nanoparticles, is a ready-to-use nanoformulation kit for the synthesis of nanoparticles for drug delivery. Poly(lactic-co-glycolic acid) (PLGA), poly(D,L-lactic acid) (PLA) and polycaprolactone (PCL) are biocompatible and biodegradable polymers that have been approved by the FDA for biomedical and pharmaceutical applications. This kit includes properly selected PLGA, PLA, and PCL polymers and stabilizer, allowing for rapid screening of optimal materials for enhanced drug loading and controlled drug release.

Features and Benefits

  • Ready-to-use polymer drug formulation screening kit for non-PEGylated nanoparticles
  • Choose from either nanopreciptiation or microfluidics-based protocols
  • Create specifically sized, biodegradable, PLGA, PLA, or PCL nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Four different non-PEGylated polymers are included

Preparation Note

Comprehensive protocols for nanoparticle synthesis methods are included:
  • A nanoprecipitation protocol to prepare drug-encapsulated nanoparticles in standard laboratory glassware.
  • A microfluidics protocol using commercial platforms or syringe pumps.

The microfluidics protocol uses NanoFabTx device kits (911593), which provide the microfluidics chips, fittings, and tubing required to get started with microfluidics-based synthesis (compatible microfluidics system or syringe pump required).

For more information, please refer to the protocol under the document section of this page.

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

Lo sentimos, en este momento no disponemos de COAs para este producto en línea.

Si necesita más asistencia, póngase en contacto con Atención al cliente

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

S Freiberg et al.
International journal of pharmaceutics, 282(1-2), 1-18 (2004-09-01)
Polymer microspheres can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. Since the rate of drug release
C Thomasin et al.
Journal of pharmaceutical sciences, 87(3), 269-275 (1998-04-02)
Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or
K S Soppimath et al.
Journal of controlled release : official journal of the Controlled Release Society, 70(1-2), 1-20 (2001-02-13)
This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems. Methods of preparation, drug loading and drug release are covered. The most important findings on surface modification methods as well as
Robert F Pagels et al.
Journal of controlled release : official journal of the Controlled Release Society, 219, 519-535 (2015-09-12)
Biologically derived therapeutics, or biologics, are the most rapidly growing segment of the pharmaceutical marketplace. However, there are still unmet needs in improving the delivery of biologics. Injectable polymeric nanoparticles and microparticles capable of releasing proteins and peptides over time
Byung Kook Lee et al.
Advanced drug delivery reviews, 107, 176-191 (2016-06-06)
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are

Artículos

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico