Skip to Content
Merck
All Photos(3)

Key Documents

417548

Sigma-Aldrich

4-Chlorophenylboronic acid

95%

Synonym(s):

(p-Chlorophenyl)boronic acid, 4-Chlorobenzeneboronic acid, NSC 25408, p-Chlorobenzeneboronic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ClC6H4B(OH)2
CAS Number:
Molecular Weight:
156.37
Beilstein:
2936346
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

95%

mp

284-289 °C (lit.)

functional group

chloro

SMILES string

OB(O)c1ccc(Cl)cc1

InChI

1S/C6H6BClO2/c8-6-3-1-5(2-4-6)7(9)10/h1-4,9-10H

InChI key

CAYQIZIAYYNFCS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

4-Chlorophenylboronic acid can be used as a reactant in:
  • Palladium-catalyzed direct arylation.
  • Cyclopalladation.
  • Tandem-type Pd(II)-catalyzed oxidative Heck reaction and intramolecular C-H amidation.
  • Copper-mediated ligandless aerobic fluoroalkylation.
  • Pd-catalyzed arylative cyclization.
  • Ruthenium catalyzed direct arylation.
  • Ligand-free copper-catalyzed coupling reactions.
  • Regioselective arylation and alkynylation by Suzuki-Miyaura and Sonogashira cross-coupling reactions.

It can also be used to prepare:
  • Substituted diarylmethylidenefluorenes via Suzuki coupling reaction.
  • Baclofen lactam by Suzuki coupling of a pyrrolinyl tosylate, followed by hydrogenation reaction.
  • Palladium(II) thiocarboxamide complexes as Suzuki coupling catalysts.
  • Biaryls by Suzuki reactions of aryl chlorides, bromides, and iodides with arylboronic acids.

Other Notes

Contains a varying amounts of anhydride

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Acute Tox. 4 Oral

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Franco Furlani et al.
Carbohydrate polymers, 208, 451-456 (2019-01-20)
Developing synthetic materials able to mimic micro- and macrorheological properties of natural networks opens up to novel applications and concepts in materials science. The present contribution describes an active network based on a semi-synthetic polymer, a lactitol-bearing chitosan derivative (Chitlac)
Copper-Mediated Aerobic Fluoroalkylation of Arylboronic Acids with Fluoroalkyl Iodides at Room Temperature
Qi, Q.; Shen, Q.; Lu, L.
Journal of the American Chemical Society, 134, 648-6551 (2012)
A Double Suzuki Approach for Synthesis of Substituted Diarylmethylidenefluorenes
C. V. Ramana, et al.
Synlett, 1, 127-128 (2007)
Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions
Du, Q.; et al.
Tetrahedron, 68, 3577-3584 (2012)
Elangovan Sindhuja et al.
Dalton transactions (Cambridge, England : 2003), 41(17), 5351-5361 (2012-03-09)
A simple route to synthesise palladium(II) complexes from the reaction of N-substituted pyridine-2-thiocarboxamide ligands and PdCl(2)(PPh(3))(2) has been developed. The new complexes are very soluble in common solvents and have been fully characterised (elemental analysis, FT-IR, (1)H, (31)P, (13)C-NMR), including

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service