Skip to Content
Merck
All Photos(2)

Documents

278327

Sigma-Aldrich

Lithium

greener alternative

wire, diam. 3.2 mm, in mineral oil, ≥98%

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Li
CAS Number:
Molecular Weight:
6.94
EC Number:
MDL number:
UNSPSC Code:
12141803
PubChem Substance ID:
NACRES:
NA.23

Assay

≥98%

form

wire

contains

copper as stabilizer

reaction suitability

reagent type: reductant

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

resistivity

9.446 μΩ-cm, 20°C

diam.

3.2 mm

impurities

0.5-1% sodium

bp

1342 °C (lit.)

mp

180 °C (lit.)

density

0.534 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

greener alternative category

SMILES string

[Li]

InChI

1S/Li

InChI key

WHXSMMKQMYFTQS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Lithium wire, dia. 3.2 mm is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Lithium wire can be used as a counter and a reference electrode for the fabrication of lithium-ion batteries and supercapacitors.

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Skin Corr. 1B - Water-react 1

Supplementary Hazards

Storage Class Code

4.3 - Hazardous materials which set free flammable gases upon contact with water

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Super-stretchy lithium-ion battery based on carbon nanotube fiber
Zhang Y, et al.
Journal of Material Chemistry A, 2(29), 11054-11059 (2014)
Advances in Wearable Fiber-Shaped Lithium-Ion Batteries
Zhang Y, et al.
Advanced Materials, 28(22), 4524-4531 (2016)
Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs
Zhang Y, et al.
Angewandte Chemie (International Edition in English), 53(52), 14564-14568 (2014)
Dongyun Chen et al.
Nanoscale, 5(17), 7890-7896 (2013-07-16)
Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li(+) as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a
Jian Jiang et al.
Nanoscale, 5(17), 8105-8113 (2013-07-26)
Controlled integration of multiple semiconducting oxides into each single unit of ordered nanotube arrays is highly desired in scientific research for the realization of more attractive applications. We herein report a diffusion-controlled solid-solid route to evolve simplex Co(CO3)0.5(OH)0.11H2O@TiO2 core-shell nanowire

Articles

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service