Skip to Content
Merck
All Photos(3)

Key Documents

704113

Sigma-Aldrich

Carbon nanotube, single-walled

≥90% carbon basis (≥70% as carbon nanotubes), 0.7-1.3 nm diameter

Synonym(s):

CHASM, CNT, Signis®CG100, SWCNT, SWNT, Single wall carbon nanotube

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

description

G/D Ratio: ≥15 (Raman 633 nm)
Median length: 1 μm

Quality Level

Assay

≥90% carbon basis (≥70% as carbon nanotubes)

form

powder (freeze-dried)

manufacturer/tradename

Signis® CG100

surface area

≥700 m2/g

impurities

≤5 wt. % Moisture content

diameter

0.7-1.3 nm

average diameter

0.82 nm

mp

3652-3697 °C (lit.)

density

1.7-1.9 g/cm3 at 25 °C (lit.)

bulk density

0.1 g/cm3

SMILES string

[C]

InChI

1S/C

InChI key

OKTJSMMVPCPJKN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Produced using CHASM′s patented CoMoCAT synthesis technology, Signis® CG100 is an economical single-wall carbon nanotube product, offering good electrical conductivity and high carbon purity.

Application

Carbon nanotube, single-walled (SWNT) belongs to the class of carbonaceous materials with excellent physiochemical, thermo-mechanical and electrochemical properties. This material can be used in a variety of sustainable energy applications such as solar cells, photocatalysis, thin film conductors, field effect transistors (FETs), biosensor, gas sensor, supercapacitor and nanomechanical resonators.
Suitable for use in conductive coatings where tight control of chirality is not critically important.

Preparation Note

CoMoCAT Catalytic Chemical Vapor Deposition (CVD) Method

Legal Information

CHASM is a trademark of Chasm Advanced Materials
CoMoCAT is a trademark of Chasm Advanced Materials
Signis is a registered trademark of Chasm Advanced Materials

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

William R A Wichert et al.
Journal of the American Society for Mass Spectrometry, 30(8), 1406-1415 (2019-03-13)
Proteinaceous toxins are harmful proteins derived from plants, bacteria, and other natural sources. They pose a risk to human health due to infection and also as possible biological warfare agents. Paper spray mass spectrometry (PS-MS) with wipe sampling was used
Thermophysical and electrical characterization of PVC?SWNT nanocomposites
Aljaafari AA, et al.
Composites Part A: Applied Science and Manufacturing, 42(14), 394-399 (2011)
Self-assembled nanodielectrics (SANDs) for unconventional electronics.
Facchetti A and Marks TJ
Material Matters, 4, 64-67 (2009)
"Investigation of the rheological, dynamic mechanical, and tensile properties of single-walled carbon nanotubes reinforced poly (vinyl chloride)
Abu-Abdeen M.
Journal of Applied Polymer Science, 124(4), 3192-3199 (2012)
Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements
So H, et al.
Journal of the American Chemical Society, 127(34), 11906-11907 (2005)

Articles

The CoMoCAT® method of single-walled carbon nanotube (SWNT) synthesis yields high purity SWNTs with specific chiralities and narrow distributions of tube diameters.

The CoMoCAT® method of single-walled carbon nanotube (SWNT) synthesis yields high purity SWNTs with specific chiralities and narrow distributions of tube diameters.

The CoMoCAT® method of single-walled carbon nanotube (SWNT) synthesis yields high purity SWNTs with specific chiralities and narrow distributions of tube diameters.

The CoMoCAT® method of single-walled carbon nanotube (SWNT) synthesis yields high purity SWNTs with specific chiralities and narrow distributions of tube diameters.

See All

Protocols

Surfactant-assisted dispersion of single-walled carbon nanotubes for debundling or exfoliation in dispersion procedures.

Surfactant-assisted dispersion of single-walled carbon nanotubes for debundling or exfoliation in dispersion procedures.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service