55299-U
Supel™ QuE QuEChERS tube
Z-Sep+ Bulk, pkg of 20 g
Synonym(s):
QuEChERS
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
product name
Supel™ QuE, Z-Sep+ Bulk, pkg of 20 g
material
polypropylene tube
Quality Level
product line
Supel™
composition
Z-Sep+ Bulk
packaging
pkg of 20 g
technique(s)
QuEChERS: suitable
surface area
480 m2/g
matrix
silica gel base material
matrix active group
zirconia-based phase
particle size
50 μm
pore size
70 Å pore size
application(s)
food and beverages
Looking for similar products? Visit Product Comparison Guide
General description
Dispersive SPE (dSPE), often referred to as the "QuEChERS" method (Quick, Easy, Cheap, Effective, Rugged, and Safe), is modern sample prep technique that is becoming increasingly popular in the area of multi-residue pesticide analysis in food and agricultural products.
Using the QuEChERS method, food/agricultural samples are first extracted with an aqueous miscible solvent (e.g., acetonitrile) in the presence of high amounts of salts (e.g., sodium chloride and magnesium sulfate) and/or buffering agents (e.g. citrate) to induce liquid phase separation and stabilize acid and base labile pesticides, respectively. Upon shaking and centrifugation, an aliquot of the organic phase is subjected to further cleanup using SPE. Unlike traditional methods using SPE tubes, in dispersive SPE, cleanup is facilitated by mixing bulk amounts of SPE (e.g., Supelclean PSA, ENVI-Carb, and/or Discovery DSC-18) with the extract. After sample cleanup, the mixture is centrifuged and the resulting supernatant can either be analyzed directly or can be subjected to minor further treatment before analysis.
Supelco carries a line of vials and centrifuge tubes containing pre-determined amounts of salts and SPE sorbents to support the most common method configurations used today.
Using the QuEChERS method, food/agricultural samples are first extracted with an aqueous miscible solvent (e.g., acetonitrile) in the presence of high amounts of salts (e.g., sodium chloride and magnesium sulfate) and/or buffering agents (e.g. citrate) to induce liquid phase separation and stabilize acid and base labile pesticides, respectively. Upon shaking and centrifugation, an aliquot of the organic phase is subjected to further cleanup using SPE. Unlike traditional methods using SPE tubes, in dispersive SPE, cleanup is facilitated by mixing bulk amounts of SPE (e.g., Supelclean PSA, ENVI-Carb, and/or Discovery DSC-18) with the extract. After sample cleanup, the mixture is centrifuged and the resulting supernatant can either be analyzed directly or can be subjected to minor further treatment before analysis.
Supelco carries a line of vials and centrifuge tubes containing pre-determined amounts of salts and SPE sorbents to support the most common method configurations used today.
Other Notes
Supel™QuE Z-Sep+ enhances sample cleanup for complex matrices by effectively removing more fat and color from sample extracts than traditional phases for QuEChERS LC-MS methods. By eliminating problematic matrix interferences, Z-Sep products provide more robust LC-MS methods. This proprietary technology can replace C18 and PSA in your current methods without additional method development.
Z-Sep+ is recommended for cleanup of samples containing greater than 15% fat.
Z-Sep+ is recommended for cleanup of samples containing greater than 15% fat.
Legal Information
Certain uses of this product may be covered by the claims of one or more pending patent applications. For licensing inquiries please contact techserv@sial.com
Supel is a trademark of Sigma-Aldrich Co. LLC
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Journal of agricultural and food chemistry, 63(21), 5107-5119 (2015-02-24)
A new, automated, high-throughput, mini-column solid-phase extraction (c-SPE) cleanup method for QuEChERS extracts was developed, using a robotic X-Y-Z instrument autosampler, for analysis of pesticide residues in fruits and vegetables by LC-MS/MS. Removal of avocado matrix and recoveries of 263
Journal of chromatography. A, 1462, 8-18 (2016-08-11)
The goal of this work was to evaluate the efficiency of several sorbents on removal fats from edible oils (olive, soya and sunflower) during the clean-up step for posterior determination of 165 pesticides by UHPLC-QqQ-MS/MS system. The extraction procedure employed
Ecotoxicology and environmental safety, 139, 124-131 (2017-01-28)
Highly toxic insecticides (HTIs) belonging to different chemical groups are dangerous to pollinating organisms, even in sublethal doses. An important objective of this study was to develop a method to determine over fifty HTIs at very low concentrations in the
Journal of chromatography. A, 1426, 161-173 (2015-12-15)
Several clean-up methods were evaluated for 253 pesticides in pollen samples concentrating on efficient clean-up and the highest number of pesticides satisfying the recovery and precision criteria. These were: (a) modified QuEChERS using dSPE with PSA+C18; (b) freeze-out prior to
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 57(5), 150-154 (2016-10-28)
Rapid multi-residue analysis of pesticides in pulses was developed using LC-MS/MS. Pesticide residues in 5 g of homogenized pulses were extracted with 30 mL of acetonitrile and salted out with 4 g of anhydrous magnesium sulfate and 2 g of
Chromatograms
suitable for GC, application for SPEsuitable for GC, application for SPEOur team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service