CGP 55845 is a potent selective GABA-B receptor antagonist with an IC50 of 5 nM.
CGP 55845 is a potent selective GABA-B receptor antagonist..
Features and Benefits
This compound is a featured product for Neuroscience research. Click here to discover more featured Neuroscience products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound is featured on the GABAB Receptors page of the Handbook of Receptor Classification and Signal Transduction. To browse other handbook pages, click here.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(7), 2638-2648 (2011-02-18)
Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E(2))-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently, the cellular
We describe a form of very fast oscillation (VFO) in patient electrocorticography (ECoG) recordings, that can occur prior to ictal events, in which the frequency increases steadily from ≈ 30-40 to >120 Hz, over a period of seconds. We dub
European journal of pharmacology, 671(1-3), 33-38 (2011-09-21)
Brain-derived neurotrophic factor (BDNF) has been suggested as a target for antidepressant treatment and chronic antidepressant drug administration shows a 'biphasic effect' on BDNF mRNA in rat hippocampus (transient decrease followed by an increase). In comparison, following acute administration only
The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(14), 5895-5902 (2013-04-05)
Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics
The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(18), 7811-7824 (2013-05-03)
Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm
DISCOVER Bioactive Small Molecules for Neuroscience
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.