Skip to Content
Merck
All Photos(1)

Documents

471313

Sigma-Aldrich

Tributylamine

≥98.5%

Synonym(s):

Tri-n-butylamine

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH3(CH2)3]3N
CAS Number:
Molecular Weight:
185.35
Beilstein:
1698872
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.21

vapor density

6.38 (vs air)

Quality Level

vapor pressure

0.3 mmHg ( 20 °C)
2.4 mmHg ( 55 °C)

Assay

≥98.5%

form

liquid

autoignition temp.

410 °F

expl. lim.

6 %

refractive index

n20/D 1.428 (lit.)

pH

10.2 (25 °C, 0.1 g/L)

bp

216 °C (lit.)

mp

−70 °C (lit.)

density

0.778 g/mL at 25 °C (lit.)

SMILES string

CCCCN(CCCC)CCCC

InChI

1S/C12H27N/c1-4-7-10-13(11-8-5-2)12-9-6-3/h4-12H2,1-3H3

InChI key

IMFACGCPASFAPR-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Tributylamine (TBA) is a tertiary amine used as strong base anion (SBA) exchange resin. TBA can also be used as a corrosion inhibitor for mild steel in HCl solution. Additionally, it can be used as a base solvent in various organic synthesis.

Application

Tributylamine may be used as:
  • An extraction solvent with CHCA (α-cyano-4-hydroxycinnamic acid) for the selective phospholipids (PLs) extraction from EVOO (extra virgin olive oil) and HO (hazelnut oil).
  • A hydroxylating agent in the synthesis of spinel nickel ferrites (NiFe2O4) nanoparticles (NPs).

Features and Benefits

In various co-precipitation methods, tributylamine is used as a hydroxylating agent instead of NaOH and NH4OH since it causes a uniform rise in pH which prevents local supersaturation and promotes homogeneous nucleation throughout the solution.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Inhalation - Acute Tox. 2 Dermal - Acute Tox. 4 Oral - Skin Irrit. 2

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 1

Flash Point(F)

145.4 °F - closed cup

Flash Point(C)

63 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Martin Enmark et al.
Analytical and bioanalytical chemistry, 411(15), 3383-3394 (2019-04-26)
This study presents a systematic investigation of factors influencing the chromatographic separation of diastereomers of phosphorothioated pentameric oligonucleotides as model solutes. Separation was carried out under ion-pairing conditions using an XBridge C18 column. For oligonucleotides with a single sulfur substitution
I E Flesch et al.
Infection and immunity, 56(6), 1464-1469 (1988-06-01)
Bone marrow-derived murine macrophages are able to inhibit the growth of Mycobacterium bovis and of some strains of M. tuberculosis after stimulation with either recombinant gamma interferon (rIFN-gamma) or lymphokines from antigen-specific T-cell clones. To elucidate the mechanism(s) involved in
A Helenius et al.
The Journal of general virology, 58 Pt 1, 47-61 (1982-01-01)
The effect of five lysosomotropic weak bases (chloroquine, amantadine, tributylamine, methylamine and NH4C1) on Semliki Forest virus (SFV) infection has been studied in BHK-21 cells. When present at concentrations equal to or greater than 0.1, 0.5, 2, 15 and 15
Christopher J Jones et al.
Journal of chromatography. A, 1217(4), 479-488 (2009-12-17)
Reverse-phase ion-pair high performance liquid chromatography (RPIP-HPLC) and ultra-performance liquid chromatography (RPIP-UPLC) are increasingly popular chromatographic techniques for the separation of organic compounds. However, the fine details of the RPIP separation mechanism are still being debated. Many factors including type
Steven A Steiner et al.
Journal of chromatography. A, 1192(1), 152-156 (2008-04-15)
A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service