跳转至内容
Merck
  • A membrane introduction mass spectrometer utilizing ion-molecule reactions for the on-line speciation and quantitation of volatile organic molecules.

A membrane introduction mass spectrometer utilizing ion-molecule reactions for the on-line speciation and quantitation of volatile organic molecules.

Rapid communications in mass spectrometry : RCM (2015-11-03)
Nicholas G Davey, Ryan J Bell, Erik T Krogh, Chris G Gill
摘要

The ability of membrane introduction mass spectrometry to quantitatively resolve low molecular weight volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene and xylene (BTEX) using electron ionization (EI) can be compromised by isobaric interferences. This work focuses on reducing isobaric interferences with ion-molecule reactions in a portable quadrupole ion trap mass spectrometer for the analysis of VOCs. EI was used to produce reagent ions from precursors (chloroform, methyl iodide, trichloroethylene or chlorobenzene) that were continually infused into the helium acceptor phase upstream of the membrane introduction mass spectrometry (MIMS) sampling interface. The reagent ions were selectively stored in the ion trap, and then allowed to react with target VOC analytes in air samples via ion-molecule reactions within the trap storage volume. A variety of reaction times were examined (50-5000 ms), and the resulting product ions were analyzed in positive ion mode. The detection limits achieved were comparable with those obtained using EI (low ppbv), and in some cases better than for EI coupled with tandem mass spectrometry (MS/MS). For the VOCs studied, isobaric interferences were greatly reduced or eliminated using chloroform as a reagent gas. The predominant ionization mechanism was via adduct formation, although charge transfer and hydride abstractions were also observed. An internal standard was shown to be effective at correcting for signal changes due to consumption of reagent ions when complex mixtures were sampled. Ion-molecule reactions were exploited to eliminate isobaric interferences that are often encountered in direct, real-time analysis strategies for atmospheric VOC mixtures. The use of a continuously infused internal standard will improve quantitative results in field applications where analyte concentration and sample complexity may be wide ranging.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
氯仿-d, 99.8 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
氯苯, ReagentPlus®, 99%
Sigma-Aldrich
氯仿, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
氯仿, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
氯苯, ACS reagent, ≥99.5%
Sigma-Aldrich
氯仿-d, 99.8 atom % D, contains 1 % (v/v) TMS
Sigma-Aldrich
氯仿, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿-d, 99.8 atom % D, contains 0.1 % (v/v) TMS
Sigma-Aldrich
氯苯, anhydrous, 99.8%
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
氯仿, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿-d, ≥99.8 atom % D, contains 0.5 wt. % silver foil as stabilizer, 0.03 % (v/v) TMS
Sigma-Aldrich
聚二甲基硅氧烷, viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
碘甲烷, contains copper as stabilizer, ReagentPlus®, 99%
Sigma-Aldrich
氯仿-d, "100%", 99.95 atom % D
Sigma-Aldrich
氯仿-d, "100%", 99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
氯仿, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
氯仿, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
聚二甲基硅氧烷, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
氯仿-d, "100%", 99.96 atom % D, contains 0.5 wt. % silver wire as stabilizer
Sigma-Aldrich
碘甲烷 溶液, 2.0 M in tert-butyl methyl ether, contains copper as stabilizer
Supelco
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer