跳转至内容
Merck
  • Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia.

Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia.

Hepatology (Baltimore, Md.) (2013-09-05)
Pooja Jha, Thierry Claudel, Anna Baghdasaryan, Michaela Mueller, Emina Halilbasic, Suman K Das, Achim Lass, Robert Zimmermann, Rudolf Zechner, Gerald Hoefler, Michael Trauner
摘要

Hepatic inflammation is a key feature of progressive liver disease. Alterations of fatty acid (FA) metabolism and signaling may play an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). Moreover, FAs activate peroxisome proliferator-activated receptor α (PPARα) as a key transcriptional regulator of hepatic FA metabolism and inflammation. Since adipose triglyceride lipase (ATGL/PNPLA2) is the key enzyme for intracellular hydrolysis of stored triglycerides and determines FA signaling through PPARα, we explored the role of ATGL in hepatic inflammation in mouse models of NASH and endotoxemia. Mice lacking ATGL or hormone-sensitive lipase (HSL) were challenged with a methionine-choline-deficient (MCD) diet as a nutritional model of NASH or lipopolysaccharide (LPS) as a model of acute hepatic inflammation. We further tested whether a PPARα agonist (fenofibrate) treatment improves the hepatic phenotype in MCD- or LPS-challenged ATGL-knockout (KO) mice. MCD-fed ATGL-KO mice, although partially protected from peripheral lipolysis, showed exacerbated hepatic steatosis and inflammation. Moreover, ATGL-KO mice challenged by LPS showed enhanced hepatic inflammation, increased mortality, and torpor, findings which were attributed to impaired PPARα DNA binding activity due to reduced FABP1 protein levels, resulting in impaired nuclear FA import. Notably, liganding PPARα through fenofibrate attenuated hepatic inflammation in both MCD-fed and LPS-treated ATGL-KO mice. In contrast, mice lacking HSL had a phenotype similar to the WT mice on MCD and LPS challenge. These findings unravel a novel protective role of ATGL against hepatic inflammation which could have important implications for metabolic and inflammatory liver diseases.

材料
货号
品牌
产品描述

Sigma-Aldrich
酯酶 来源于猪肝脏, lyophilized powder, ≥15 units/mg solid
Sigma-Aldrich
酯酶 来源于猪肝脏, ammonium sulfate suspension, ≥150 units/mg protein (biuret)
Sigma-Aldrich
酯酶 来源于枯草芽孢杆菌, recombinant, expressed in E. coli, ≥10 U/mg
Sigma-Aldrich
酯酶 来源于猪肝脏, lyophilized, powder, slightly beige, ≥50 U/mg
Sigma-Aldrich
羧基酯酶1型b 人, recombinant, expressed in baculovirus infected BTI insect cells
Sigma-Aldrich
羧基酯酶2 人, recombinant, expressed in baculovirus infected BTI insect cells
Sigma-Aldrich
酯酶 来源于兔肝脏, lyophilized powder, ≥30 units/mg protein
Sigma-Aldrich
酯酶 来源于嗜热脂肪芽胞杆菌, recombinant, expressed in E. coli, ≥4.0 U/mg
Sigma-Aldrich
酯酶 来源于嗜热脂肪芽胞杆菌, ≥0.2 U/mg
Sigma-Aldrich
羧基酯酶2 人, recombinant, expressed in mouse NSO cells, ≥95% (SDS-PAGE)
Sigma-Aldrich
羧基酯酶1异构体c 人, recombinant, expressed in baculovirus infected BTI insect cells
Sigma-Aldrich
Esterase Pseudomonas fluorescens, recombinant 来源于大肠杆菌, ≥4 U/mg
Sigma-Aldrich
Esterase Isoenzyme 1 porcine liver, recombinant, recombinant, expressed in E. coli, ≥30.0 U/g