跳转至内容
Merck
  • Role of organic cation transporters in the ocular disposition of its intravenously injected substrate in rabbits: implications for ocular drug therapy.

Role of organic cation transporters in the ocular disposition of its intravenously injected substrate in rabbits: implications for ocular drug therapy.

Experimental eye research (2013-07-31)
Jayabalan Nirmal, Anju Sirohiwal, Sundararajan Baskar Singh, Nihar Ranjan Biswas, Vasantha Thavaraj, Raj Vardhan Azad, Thirumurthy Velpandian
摘要

The present study was conducted to test the hypothesis; OCT may be active from blood-to-vitreous for the uptake of its substrates. Ocular uptake of Tetraethylammonium (TEA) across blood ocular barriers and the tissue distribution was evaluated in vivo in New Zealand albino rabbits after intravenous administration. Quinidine (blocker) pretreatment resulted in a significant (p < 0.05) reduction in the Area Under the Curve (AUC) of TEA in vitreous (4.2 fold) and aqueous humor (1.8 fold) as compared to the control group which supports the role of OCT in uptake transport of its substrate across Blood ocular barrier. The blockade of OCT also affected the elimination of its substrate resulting in increased plasma levels. In most of the tissues, OCT are functionally present from apical to basolateral. The gene expression studies also showed the presence of OCT1, OCTN1 and OCTN2 in various ocular tissues studied. The present findings suggest that OCT are functionally active in blood ocular barriers and involved in the transport of its substrate from blood-to-vitreous humor.

材料
货号
品牌
产品描述

Sigma-Aldrich
四乙基氯化铵, ≥98% (titration)
Sigma-Aldrich
四乙基氢氧化铵 溶液, 35 wt. % in H2O
Sigma-Aldrich
溴化四乙铵, reagent grade, 98%
Sigma-Aldrich
溴化四乙铵, ReagentPlus®, 99%
Sigma-Aldrich
四乙基氢氧化铵 溶液, 20 wt. % in H2O
Sigma-Aldrich
四乙基氯化铵, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
四乙基碘化铵, 98%
Sigma-Aldrich
四乙基氯化铵 水合物
Sigma-Aldrich
四乙基氢氧化铵 溶液, ~25% in methanol (~1.5 M)
Supelco
四乙基氯化铵, for electrochemical analysis, ≥99.0%
Supelco
四乙基氢氧化铵 溶液, ~1.0 M (CH3CH2)4NOH in H2O, electrochemical grade