化驗
99.7%
形狀
wire
自燃溫度
1198 °F
製造商/商標名
Goodfellow 588-779-48
電阻係數
4.46 μΩ-cm, 20°C
長度 × 直徑
0.1 m × 0.356 mm
bp
2970 °C (lit.)
mp
1278 °C (lit.)
密度
1.85 g/mL at 25 °C (lit.)
SMILES 字串
[Be]
InChI
1S/Be
InChI 密鑰
ATBAMAFKBVZNFJ-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
一般說明
For updated SDS information please visit www.goodfellow.com.
法律資訊
Product of Goodfellow
訊號詞
Danger
危險分類
Acute Tox. 3 Oral - Carc. 1B - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 1
儲存類別代碼
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
Nature communications, 6, 7705-7705 (2015-07-04)
The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting
Nature communications, 5, 5822-5822 (2014-12-20)
Thin films comprising semiconductor nanocrystals are emerging for applications in electronic and optoelectronic devices including light emitting diodes and solar cells. Achieving high charge carrier mobility in these films requires the identification and elimination of electronic traps on the nanocrystal
Journal of environmental monitoring : JEM, 8(6), 605-611 (2006-06-13)
Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the
Journal of occupational and environmental hygiene, 6(12), 751-757 (2009-11-07)
We compare beryllium to H+ and show that beryllium can displace H+ in many "strong hydrogen bonds" where Be as a "tetrahedral proton" (O-Be-O angle is tetrahedral as opposed to the nearly linear O-H-O angle) is thermodynamically preferred. The strong
Nature, 513(7517), 224-228 (2014-08-27)
The Younger Dryas stadial, a cold event spanning 12,800 to 11,500 years ago, during the last deglaciation, is thought to coincide with the last major glacial re-advance in the tropical Andes. This interpretation relies mainly on cosmic-ray exposure dating of glacial
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门