20152
Chromosorb® W
HP, 60-80 mesh particle size, bottle of 100 g
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
packaging
bottle of 100 g
technique(s)
gas chromatography (GC): suitable
surface area
0.6-1.3 m2/g
particle size
60-80 mesh
density
0.23 g/mL at 25 °C
0.18 g/cm3 (loose weight)(lit.)
SMILES string
O=[Si]=O
InChI
1S/O2Si/c1-3-2
InChI key
VYPSYNLAJGMNEJ-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Legal Information
Chromosorb is a registered trademark of Imerys Minerals California, Inc.
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Journal of colloid and interface science, 368(1), 528-532 (2011-12-14)
This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and
Environmental science and pollution research international, 20(6), 3708-3717 (2012-11-13)
This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic
Journal of hazardous materials, 217-218, 85-91 (2012-04-03)
We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form
Journal of hazardous materials, 237-238, 262-269 (2012-09-15)
The present study reports the effect of bioaugmentation by free and immobilized bacterial culture on the rhizodegradation of petroleum-polluted soil using Sesbania cannabina plant. Total petroleum hydrocarbon (TPH), hydrocarbon-degrading bacterial counts, microbial activity and root morphology were assessed during 120
Environmental science & technology, 45(18), 7718-7726 (2011-08-23)
Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service