The vascular endothelial growth factor receptor (VEGFR) tyrosine kinases are being explored as targets for antiangiogenic cancer therapy. Radiotherapy also inhibits tumor growth and affects vasculature. We investigated the combination of the potent VEGFR tyrosine kinase inhibitor AZD2171 and ionizing
PARP inhibitors target BRCA mutations and defective homologous recombination repair (HRR) for the treatment of epithelial ovarian cancer (EOC). However, the treatment of HRR-proficient EOC with PARP inhibitors remains challenging. The objective of this study was to determine whether the
Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a promising therapeutic approach that aims to stabilize the progression of solid malignancies by abrogating tumor-induced angiogenesis. This may be accomplished by inhibiting the kinase activity of VEGF receptor-2 (KDR), which
Cediranib, a pan-tyrosine kinase inhibitor is showing promising results for the treatment of several solid tumours. In breast cancer, its effects remain unclear, and there are no predictive biomarkers. Several studies have examined the expression profiles of microRNAs (miRNAs) in response
This study investigated drugs able to sensitize P-glycoprotein (P-gp)-overexpressing resistant KBV20C cancer cells to vincristine or eribulin treatment and assessed their associated mechanisms of action. Eight tyrosine kinase inhibitors (lapatinib, gefitinib, imatinib, erlotinib, nilotinib, pazopanib, cediranib, and vandetanib) and one
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.