Skip to Content
Merck
All Photos(5)

Documents

442704

Sigma-Aldrich

Lithium cobalt(III) oxide

greener alternative

99.8% trace metals basis

Synonym(s):

Lithium cobaltite

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiCoO2
CAS Number:
Molecular Weight:
97.87
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.23

grade

battery grade

Assay

99.8% trace metals basis

form

powder

mol wt

Mw 97.87 g/mol

composition

LiCoO2

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

density

4.82 g/cm3 (lit.)

application(s)

battery manufacturing

greener alternative category

SMILES string

[Li+].[O-][Co]=O

InChI

1S/Co.Li.2O/q;+1;;-1

InChI key

BFZPBUKRYWOWDV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Lithium cobalt(III) oxide is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Critical substance in the quest for high performance, advanced batteries.
Lithium cobalt(III) oxide (LiCoO2) can be used as a cathode material with a specific capacity of ~274 mAhg−1 for the fabrication of lithium-ion batteries. Commercially, these LiCoO2 fabricated Li-ion batteries can be used in a majority of smartphones. LiCoO2 can also be used in the formation of fuel cells.

Pictograms

Health hazardEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 2 - Repr. 1B

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
Huang L, et al.
Bioresource Technology, 128, 539-546 (2013)
Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping
Liu Q, et al.
Nature Energy, 3(11), 936-943 (2018)
Zhecheva, E. et al.
Chemistry of Materials, 8, 1429-1429 (1996)
Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells
Krishnan P, et al.
International Journal of Hydrogen Energy, 33(23), 7095-7102 (2008)
Challenges for rechargeable Li batteries
Goodenough JB and Kim Y
Chemistry of Materials, 22(3), 587-603 (2009)

Articles

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

Professor Qiao's review explores stable microstructures for lithium metal fluoride batteries, advancing energy storage technologies.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service