Chemical & pharmaceutical bulletin, 59(10), 1233-1242 (2011-10-04)
Novel 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-7-(2-{2-[(E)-2-cyclopentylvinyl]-5-methyloxazol-4-yl}ethoxy)-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14c) was identified as a peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist. The transactivation activity of 14c was comparable to that of rosiglitazone in human PPARγ (EC50=0.14 µM) and was much
International journal of peptide and protein research, 43(1), 62-68 (1994-01-01)
A new method of synthesizing ortho-methylated phenylalanines has been developed. Phenylalanines with at least one free ortho-position undergo a Pictet-Spengler cyclization with formaldehyde followed by hydrogenolytic splitting of the endocyclic benzylic C--N bond of 1,2,3,4-tetrahydroisoquinolines and afford corresponding ortho-methyl derivatives.
Chemical & pharmaceutical bulletin, 59(7), 876-879 (2011-07-02)
2-Acyl-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2,4-Hexadienoyl)-7-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14) showed peroxisome proliferator-activated receptor γ (PPARγ) and PPARα agonist activities and protein-tyrosine phosphatase 1B (PTP-1B) inhibitory activities. PPARγ agonist activity of 14 was comparable to that of rosiglitazone, and
Incorporation of L- or D-Tic into position 7 of oxytocin (OT) and its deamino analogue ([Mpa(1)]OT) resulted in four analogues, [L-Tic(7)]OT (1), [D-Tic(7)]OT (2), [Mpa(1),L-Tic(7)]OT (3) and [Mpa(1),D-Tic(7)]OT (4). Their biological properties were described by Fragiadaki et al. (Eur J
A series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid diamides that increase chloride transport in cells expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein has been identified from our compound library. Analoging efforts and the resulting structure-activity relationships uncovered are detailed. Compound potency
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.