Skip to Content
Merck
All Photos(3)

Key Documents

203815

Sigma-Aldrich

Molybdenum(VI) oxide

99.97% trace metals basis

Synonym(s):

Molybdenum trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
MoO3
CAS Number:
Molecular Weight:
143.94
EC Number:
MDL number:
UNSPSC Code:
12352303
eCl@ss:
38180807
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.97% trace metals basis

form

powder

mp

795 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[Mo](=O)=O

InChI

1S/Mo.3O

InChI key

JKQOBWVOAYFWKG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Molybdenum(VI) oxide, also known as molybdenum trioxide, is a compound of molybdenum and oxygen with the approximate chemical formula of MoO3. Typically, it a white or light yellow powder, although molybdenum(VI) oxide can adopt a high concentration of defects including oxygen vacancies that impart a bluish or greenish color. Molybdenum(VI) oxide has a high melting point of 2,620 °C. Chemically, molybdenum(VI) oxide is a strong oxidizing agent and has a high work function. Consequently, it is used as a catalyst in chemical reactions and as a starting material to produce other molybdenum compounds. In addition, it is added to pigments, glasses, lubricants, and plastics.

Application

Precursor to LAMOX fast ion conductors and superconductors.
Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13 and Mo19 clusters. The new cluster product is a small band gap semiconductor.
Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13and Mo19 clusters. The new cluster product is a small band gap semiconductor.

Pictograms

Health hazardExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Carc. 2 - Eye Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Di-Yan Wang et al.
Advanced materials (Deerfield Beach, Fla.), 24(25), 3415-3420 (2012-06-08)
A heterojunction photodiode with NIR photoresponse using solution processable pyrite FeS(2) nanocrystal ink is demonstrated which has the advantages of earth-abundance and non-toxicity. The device consists of a FeS(2) nanocrystal (NC) thin film sandwiched with semiconducting metal oxides with a
Yu-Zhan Wang et al.
The Journal of chemical physics, 134(3), 034706-034706 (2011-01-26)
The electronic structures at the MoO(3)∕Co interface were investigated using synchrotron-based ultraviolet and x-ray photoelectron spectroscopy. It was found that interfacial chemical reactions lead to the reduction of Mo oxidation states and the formation of Co-O bonds. These interfacial chemical
Lili Cai et al.
Nano letters, 11(2), 872-877 (2011-01-26)
We report an atmospheric, catalyst-free, rapid flame synthesis technique for growing single, branched, and flower-like α-MoO(3) nanobelt arrays on diverse substrates. The growth rate, morphology, and surface coverage density of the α-MoO(3) nanobelts were controlled by varying the flame equivalence
Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules.
Hui Jin et al.
Advanced materials (Deerfield Beach, Fla.), 24(19), 2572-2577 (2012-04-11)
Efficient single-layer polymer light-emitting diodes.
Dinesh Kabra et al.
Advanced materials (Deerfield Beach, Fla.), 22(29), 3194-3198 (2010-06-22)

Articles

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Catalytic water splitting produces hydrogen crucial for renewable energy, petroleum refining, and chemical industry applications like methanol production.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service