Skip to Content
Merck
All Photos(1)

Key Documents

333271

Sigma-Aldrich

Zinc sulfide

pieces, 3-12 mm, 99.9% trace metals basis

Synonym(s):

Zinc sulphide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ZnS
CAS Number:
Molecular Weight:
97.46
EC Number:
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

99.9% trace metals basis

form

pieces

reaction suitability

core: zinc
reagent type: catalyst

particle size

3-12 mm

density

4.1 g/mL at 25 °C (lit.)

SMILES string

S=[Zn]

InChI

1S/S.Zn

InChI key

WGPCGCOKHWGKJJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Suitable for vacuum deposition.
Uses:
  • Preparation of flexible transparent conductive coatings essential for fabrication of a variety of printed electronic devices such as flexible displays and solar cells
  • Prepare a composite CdS-ZnS/Zirconium-titanium phosphate (ZTP) photocatalyst for hydrogen production under visible light
  • Prepare light-controlled bioelectrochemical sensors based on CdSe/ZnS quantum dots
  • Catalyst for photocatalytic degradation of organic pollutants
  • Preparation of color tunable light-emitting diodes (LEDs)
  • Prepare (CdS-ZnS)-TiO2 combined photocatalysts for electricity production via photoelectrocatalysis
  • Catalyst for synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition
  • Prepare CdSe/ZnS q uantum dots for chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes
  • Preparation of ZnS nanocrystals for ultrasensitive protein detection in terms of multiphonon resonance Raman scattering

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hamid Reza Rajabi et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 107, 256-262 (2013-02-26)
This work reports a spectrofluorimetric method for selective and sensitive determination of sulfide ion in aqueous solution. The ultra-small zinc sulfide quantum dots (QDs) doped with manganese (ZnS:Mn) were synthesized by using a simple and fast procedure based on the
Ingrid Corazzari et al.
Toxicology in vitro : an international journal published in association with BIBRA, 27(2), 752-759 (2013-01-01)
CdSe Quantum Dots (QDs) are increasingly being employed in both industrial applications and biological imaging, thanks to their numerous advantages over conventional organic and proteic fluorescent markers. On the other hand a growing concern has emerged that toxic elements from
Jung Ho Yu et al.
Nature materials, 12(4), 359-366 (2013-02-19)
Three-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet
Yi-Chun Yeh et al.
Chemical communications (Cambridge, England), 49(9), 910-912 (2012-12-19)
Functionalization of bacterial cell surfaces has the potential to introduce new activities by chemical modification. Here we show that a bacteriophage-receptor complex can be used to functionalize the surface of two Gram-negative proteobacteria, Escherichia coli and Ralstonia eutropha with CdSe/ZnS
Qiang Li et al.
Nanoscale, 5(4), 1638-1648 (2013-01-22)
Single crystalline wurtzite ternary and quaternary semiconductor nanoribbons (CuInS(2), CuIn(x)Ga(1-x)S(2)) were synthesized through a solution-based method. The structure and composition of the nanoribbons were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), the corresponding fast Fourier transform

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service