Barium oxide, also known as barium(II) oxide, is a white or off-white fine powder with a melting point exceeding 1,800 °C. It is a highly stable compound with a high melting point and good chemical resistance, making it suitable for use in a wide range of applications. There are several methods to produce barium oxide including the thermal decomposition of barium carbonate and the electrolysis of barium chloride.
Application
Barium oxide is used in a variety of applications. It is used as a raw material in the production of ceramics, such as glazes and ceramic pigments. It is used as a refractory material in the production of furnace linings and high-temperature applications. It is used as a fluxing agent in the production of glass, helping to lower the melting point and improve the clarity of glass. It is used as a catalyst in the production of polyethylene and other polymers. It is often used as a starting material to produce other barium compounds or dope semiconductors.
Features and Benefits
Used in the synthesis of the high-κ material BST (barium strontium titanate). Used in the study of NOX storage.
Barium titanate is a ferroelectric perovskite with unique electric properties; therefore, it is widely applied in the fabrication of inorganic coatings or thin films, capacitors, or in the production of devices for energy storage and conversion. This paper describes the
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 66(4-5), 1307-1311 (2006-08-22)
Radiative properties of Er3+-doped tertiary bismuth glass has been analyzed by the Judd-Ofelt theory. NIR to visible upconversion in the Er3+-doped glass has been reported. The mechanism for the upconversion is explained on the basis of quadratic dependence on excitation
Journal of physics. Condensed matter : an Institute of Physics journal, 23(33), 334213-334213 (2011-08-05)
A new reactive force field to describe proton diffusion within the solid oxide fuel cell material BaZrO(3) has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both
The purpose of the study was to determine the effect of different forms and concentrations (2.5, 3, 4, 5% by volume) of glass fibres (chopped strand mat, continuous and woven) on fatigue resistance of acrylic denture base resin. The fatigue
Three UEDMA/TEGDMA (50:50 by weight) based dental composites were made, each with filler loadings of 53 vol.%. The three composites contained silane-treated filler particles with average particle diameters of 1.5, 3.0, or 10.0 microm. Twelve specimens per composite were mounted
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.