GF03514700
Zinc
foil, not light tested, 25x25mm, thickness 0.015mm, 99.9%
Synonym(s):
Zinc, ZN000180
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
vapor pressure
1 mmHg ( 487 °C)
Assay
99.90%
form
foil
manufacturer/tradename
Goodfellow 035-147-00
resistivity
5.8 μΩ-cm, 20°C
L × W × thickness
25 mm × 25 mm × 0.015 mm
bp
907 °C (lit.)
mp
420 °C (lit.)
density
7.133 g/mL at 25 °C (lit.)
SMILES string
[Zn]
InChI
1S/Zn
InChI key
HCHKCACWOHOZIP-UHFFFAOYSA-N
Related Categories
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Chemistry (Weinheim an der Bergstrasse, Germany), 10(22), 5823-5828 (2004-10-09)
A solution surface-erosion route was successfully employed to produce one-dimensional (1D) ZnO nanostructures. ZnO nanorod arrays and three-dimensional urchin-like assemblies could be selectively obtained with different manipulations. In this process, zinc foil was introduced to an organic solution system and
Chemistry (Weinheim an der Bergstrasse, Germany), 13(23), 6667-6673 (2007-05-31)
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods
ACS nano, 4(5), 2730-2734 (2010-04-27)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The
Nanoscale research letters, 5(3), 570-575 (2009-01-01)
We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range
A new vapor-phase hydrothermal method to concurrently grow ZnO nanotube and nanorod array films on different sides of a zinc foil substrate.
Chemistry (Weinheim an der Bergstrasse, Germany), 18(17), 5165-5169 (2012-03-21)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service