Skip to Content
Merck
  • Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating.

Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating.

Journal of controlled release : official journal of the Controlled Release Society (2014-08-26)
Terence Ta, Elizabeth Bartolak-Suki, Eun-Joo Park, Kavon Karrobi, Nathan J McDannold, Tyrone M Porter
ABSTRACT

Thermosensitive liposomes have emerged as a viable strategy for localized delivery and triggered release of chemotherapy. MR-guided focused ultrasound (MRgFUS) has the capability of heating tumors in a controlled manner, and when combined with thermosensitive liposomes can potentially reduce tumor burden in vivo. However, the impact of this drug delivery strategy has rarely been investigated. We have developed a unique liposome formulation modified with p(NIPAAm-co-PAA), a polymer that confers sensitivity to both temperature and pH. These polymer-modified thermosensitive liposomes (PTSL) demonstrated sensitivity to focused ultrasound, and required lower thermal doses and were more cytotoxic than traditional formulations in vitro. A set of acoustic parameters characterizing optimal release from PTSL in vitro was applied in the design of a combined MRgFUS/PTSL delivery platform. This platform more effectively reduced tumor burden in vivo when compared to free drug and traditional formulations. Histological analysis indicated greater tumor penetration, more extensive ECM remodeling, and greater cell destruction in tumors administered PTSL, correlating with improved response to the therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid, 98% (HPLC)
Sigma-Aldrich
N-Isopropylacrylamide, ≥99%
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Doxorubicin hydrochloride, 98.0-102.0% (HPLC)
Sigma-Aldrich
N-Isopropylacrylamide, 97%
Doxorubicin hydrochloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Doxorubicin hydrochloride, suitable for fluorescence, 98.0-102.0% (HPLC)
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
HEPES
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
SAFC
HEPES
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
HEPES, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, ≥99% (TLC)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)