GF17042082
Iron
tube, 200mm, outside diameter 4.0mm, inside diameter 3.6mm, wall thickness 0.2mm, as drawn, 99.5%
Synonym(s):
Iron, FE007400
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Linear Formula:
Fe
CAS Number:
Molecular Weight:
55.85
MDL number:
UNSPSC Code:
12141721
PubChem Substance ID:
NACRES:
NA.23
Assay
99.50%
form
tubes
manufacturer/tradename
Goodfellow 170-420-82
resistivity
9.71 μΩ-cm
L × thickness
200 mm × 0.2 mm
O.D. × I.D.
4.0 mm × 3.6 mm
bp
2750 °C (lit.)
mp
1535 °C (lit.)
density
7.86 g/mL at 25 °C (lit.)
SMILES string
[Fe]
InChI
1S/Fe
InChI key
XEEYBQQBJWHFJM-UHFFFAOYSA-N
Related Categories
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Lot/Batch Number
It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Hypoferremia of infection: a double-edged sword?
Kristen L Lokken et al.
Nature medicine, 20(4), 335-337 (2014-04-09)
50 years ago in the Journal of Pediatrics: Iron metabolism in premature infants: II. Prevention of iron deficiency.
Pamela J Kling
The Journal of pediatrics, 164(4), 768-768 (2014-03-22)
Don-Kyu Kim et al.
Nature medicine, 20(4), 419-424 (2014-03-25)
In response to microbial infection, expression of the defensin-like peptide hepcidin (encoded by Hamp) is induced in hepatocytes to decrease iron release from macrophages. To elucidate the mechanism by which Salmonella enterica var. Typhimurium (S. typhimurium), an intramacrophage bacterium, alters
Joseph D Mancias et al.
Nature, 509(7498), 105-109 (2014-04-04)
Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration. Much of our understanding of this process has emerged from
Carmen S D Rodrigues et al.
Environmental technology, 35(9-12), 1307-1319 (2014-04-08)
This study aims to investigate the efficiency of individual and integrated processes applied to organic matter abatement and biodegradability improvement of a polyester dyeing wastewater, namely coagulation/flocculation combined with Fenton's reagent (Approach 1), Fenton oxidation alone (Approach 2) and its
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service