Skip to Content
Merck
All Photos(1)

Documents

398209

Sigma-Aldrich

Lithium tert-butoxide solution

1.0 M in hexanes

Synonym(s):

2-Methyl-2-propanol lithium salt, Lithium 2-methylpropan-2-olate, Lithium tert -butanolate, Lithium tert -butylate, Lithium t -butoxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)3COLi
CAS Number:
Molecular Weight:
80.05
Beilstein:
3620018
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

form

liquid

reaction suitability

core: lithium

concentration

1.0 M in hexanes

bp

68-70 °C

density

0.69 g/mL at 25 °C

SMILES string

[Li+].CC(C)(C)[O-]

InChI

1S/C4H9O.Li/c1-4(2,3)5;/h1-3H3;/q-1;+1

InChI key

LZWQNOHZMQIFBX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 2 - Asp. Tox. 1 - Eye Dam. 1 - Flam. Liq. 2 - Repr. 2 - Self-heat. 1 - Skin Corr. 1B - STOT RE 2 Inhalation - STOT SE 3

Target Organs

Central nervous system, Nervous system

Storage Class Code

4.2 - Pyrophoric and self-heating hazardous materials

WGK

WGK 3

Flash Point(F)

-18.4 °F - closed cup

Flash Point(C)

-28 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Teng-Hao Chen et al.
Nature communications, 5, 5131-5131 (2014-10-14)
Metal-organic and covalent organic frameworks are porous materials characterized by outstanding thermal stability, high porosities and modular synthesis. Their repeating structures offer a great degree of control over pore sizes, dimensions and surface properties. Similarly precise engineering at the nanoscale

Articles

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service