Archives of toxicology, 70(10), 591-598 (1996-01-01)
Using gas chromatography/mass spectrometry for detection of hemoglobin adducts, and 32P-postlabelling for DNA adducts, we examined macromolecular binding in Fischer-344 rats administered 2,4-or 2,6-toluene diamine (TDA). The dose-response and correlative relationship between the two macromolecules were investigated over a range
Detecting genotoxicity in the liver is considered an effective approach for predicting hepatocarcinogenicity, as many genotoxic chemicals in vivo may act as hepatocarcinogens in rodents. Here, a genotoxic rodent hepatocarcinogen, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), and a genotoxic (Ames positive) noncarcinogen, 2,6-diaminotolunene
American Industrial Hygiene Association journal, 58(3), 229-235 (1997-03-01)
Comparative air measurements of toluene diisocyanate (TDI) were performed in a 5.6 m3 standard atmosphere and at a TDI flexible foam plant. Air samples were collected in midget impinger flasks containing 9-(N-methyl-amino-methyl)-anthracene (MAMA) in toluene and on 13-mm glass-fiber filters
Environmental health perspectives, 104 Suppl 3, 683-686 (1996-05-01)
The aromatic amines 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminotoluene (2,6-DAT) are structural isomers that have been extensively studied for their mutagenic and carcinogenic characteristics. Both compounds are rapidly absorbed after oral administration and are equally mutagenic in the Ames test; however, 2,4-DAT
The aromatic amines 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminotoluene (2,6-DAT) are structural isomers that have been extensively studied for their mutagenic and carcinogenic characteristics. Both compounds are equally mutagenic in the Ames/Salmonella assay in the presence of S9. However, the differences in
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.