Skip to Content
Merck
All Photos(1)

Key Documents

F9679

Sigma-Aldrich

Anti-Fatty Acid Synthase (C-terminal) antibody produced in rabbit

1 mg/mL, affinity isolated antibody, buffered aqueous solution

Synonym(s):

Anti-FAS, Anti-FASN

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12352203
NACRES:
NA.41

biological source

rabbit

Quality Level

conjugate

unconjugated

antibody form

affinity isolated antibody

antibody product type

primary antibodies

clone

polyclonal

form

buffered aqueous solution

mol wt

antigen 270 kDa

species reactivity

mouse, rat, human

concentration

1 mg/mL

technique(s)

western blot: 0.5-1 μg/mL using lysates of Rat1 cells
western blot: 1-2 μg/mL using lysates of human HEK 293-T cells

UniProt accession no.

shipped in

dry ice

storage temp.

−20°C

target post-translational modification

unmodified

Gene Information

human ... FASN(2194)
mouse ... Fasn(14104)
rat ... Fasn(50671)

General description

Fatty acid synthase (FAS, FASN) is a multifunctional protein, mainly involved in catalyzing the synthesis of palmitate from acetyl-CoA and malonyl CoA, in the presence of NADPH. In mammals, it is composed of two identical multifunctional polypeptides, in which three catalytic domains in the N-terminal section (β-ketoacyl synthase, malonyl/acetyl tansferase, and dehydrase) are separated by a core region of about 600 residues from four C-terminal domains (enoyl reductase, β-ketoacyl reductase, acyl carrier protein, and thioesterase).

Immunogen

synthetic peptide corresponding to amino acids 2497-2511 of human fatty acid synthase, conjugated to KLH via an N-terminal added lysine residue. The corresponding sequence is conserved in human, rat, and mouse.

Application

Anti-Fatty Acid Synthase (C-Terminal) antibody is suitable for western blot analysis at a concentration of 0.5-1μg/mL using lysates of Rat1 cells and 1-2μg/mL using lysates of human HEK 293-T cells.

Biochem/physiol Actions

FAS plays an essential role during embryogenesis and energy homeostasis in adult animals. It also acts as the carbon source for fatty acid synthesis. It has been shown to be overexpressed in various types of human cancer, including prostate, breast, ovary and others.

Physical form

Solution in 0.01 M phosphate buffered saline, pH 7.4, containing 15 mM sodium azide.

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C Rufo et al.
The Journal of biological chemistry, 276(24), 21969-21975 (2001-03-30)
Refeeding carbohydrate to fasted rats induces the transcription of genes encoding enzymes of fatty acid biosynthesis, e.g. fatty-acid synthase (FAS). Part of this transcriptional induction is mediated by insulin. An insulin response element has been described for the fatty-acid synthase
DaoHai Zhang et al.
Molecular & cellular proteomics : MCP, 4(11), 1686-1696 (2005-07-29)
The receptor tyrosine kinase ErbB2 (HER-2/neu) is overexpressed in up to 30% of breast cancers and is associated with poor prognosis and an increased likelihood of metastasis especially in node-positive tumors. In this proteomic study, to identify the proteins that
Fatty acid synthase, a proficient multifunctional enzyme.
S J Wakil
Biochemistry, 28(11), 4523-4530 (1989-05-30)
Javier A Menendez et al.
Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10715-10720 (2004-07-06)
Fatty acid synthase (FAS) activity is a potential therapeutic target to treat cancer and obesity. Here, we have identified a molecular link between FAS and HER2 (erbB-2) oncogene, a marker for poor prognosis that is overexpressed in 30% of breast
Ellen De Schrijver et al.
Cancer research, 63(13), 3799-3804 (2003-07-04)
Fatty acid synthase (FASE), a key enzyme in the biosynthesis of fatty acids, is markedly overexpressed in many human epithelial cancers, rendering it an interesting target for antineoplastic therapy. Here, using the potent and highly sequence-specific mechanism of RNA interference

Articles

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service