Skip to Content
Merck
All Photos(2)

Key Documents

916862

Sigma-Aldrich

NanoFabTx device accessory

tubing, 100 μm FEP, 10 m, with ferrules

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105100
UNSPSC Code:
41121800
NACRES:
NA.23

description

Microfluidic hardware kit component:
Tubing 10m, 100μm FEP with ferrules x1

Quality Level

application(s)

advanced drug delivery

Looking for similar products? Visit Product Comparison Guide

General description

NanoFabTx device accessory, tubing, 100 μm FEP with ferrules, 10 m is a component of our NanoFabTx microfluidic - micro, device kit for synthesis of 1-5 μm particles (911860). The kit additionally includes a protocol, manifold, and additional accessories for microfluidic-based synthesis. Fluorinated ethylene propylene (FEP) is a tough, flexible copolymer of tetrafluoroethylene and hexafluoropropylene, ideal for fluid processing equipment when chemical resistance, high purity, and low stiffness are required.

Application

NanoFabTx device accessory, tubing, 100 μm FEP with ferrules, 10 m can be used as a replacement for the component in our NanoFabTx microfluidic - micro, device kit for synthesis of 1-5 μm particles (911860).

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Samar Damiati et al.
Genes, 9(2) (2018-02-22)
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow
Andrew Gdowski et al.
Journal of nanobiotechnology, 16(1), 12-12 (2018-02-13)
The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be
Xuanyu Li et al.
Advanced drug delivery reviews, 128, 101-114 (2017-12-27)
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service