Skip to Content
Merck
All Photos(1)

Key Documents

G4134

Sigma-Aldrich

Glucose-6-phosphate Dehydrogenase from baker′s yeast (S. cerevisiae)

Type IX, lyophilized powder, 200-400 units/mg protein (modified Warburg-Christian)

Synonym(s):

G-6-P-DH, Zwischenferment

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
Enzyme Commission number:
EC Number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

type

Type IX

Quality Level

form

lyophilized powder

specific activity

200-400 units/mg protein (modified Warburg-Christian)

mol wt

128 kDa

β-NADP and β-NADPH content

≤10 mmol/mol

application(s)

agriculture

shipped in

dry ice

storage temp.

−20°C

Looking for similar products? Visit Product Comparison Guide

General description

Research area: Cell Signaling

Glucose-6-phosphate dehydrogenase (G6PD) is a key metabolic enzyme of the pentose phosphate pathway. In S. cerevisiae, it is encoded by the ZWF1 gene. G6PD exists as a tetramer in its active form.

Application

Glucose-6-phosphate dehydrogenase is used:
  • To test ketose reductase activity in developing maize endosperm.
  • For recycling microassay of β-NADP and β-NADPH.
  • To measure the intracellular levels of NADPH and total NADP.
  • To measure the nicotinamide adenine dinucleotide (NAD) kinase kinetic assay activity.

Biochem/physiol Actions

Glucose-6-phosphate dehydrogenase catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconolacetone as the first step in the pentose phosphate pathway.
Glucose-6-phosphate dehydrogenase catalyzes the rate-limiting step in the pentose phosphate pathway. Its function involves the conversion of glucose-6-phosphate to 6-phosphogluconolacetone while generating NADPH, which is essential for the regeneration of glutathione The glutathione system utilizes nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) to effectively eliminate excess hydrogen peroxide. Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in regulating cell growth and survival. Their levels are higher in cells undergoing normal and neoplastic growth. Increased glucose-6-phosphate dehydrogenase activity plays a pivotal role in preventing reactive oxygen species mediated cell death. Glucose-6-phosphate dehydrogenase is over expressed in several cancers whereas its activity is reduced in hyperglycemia. A deficiency in glucose-6-phosphate dehydrogenase causes hemolysis.

Unit Definition

One unit will oxidize 1.0 μmole of D-glucose 6-phosphate to 6-phospho-D-gluconate per min in the presence of NADP at pH 7.4 at 25 °C.

Physical form

Lyophilized powder essentially sulfate-free, containing approx. 20% sodium citrate

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Resp. Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

D Oh et al.
Molecular and cellular biology, 10(4), 1415-1422 (1990-04-01)
The Saccharomyces cerevisiae GAL5 (PGM2) gene was isolated and shown to encode the major isozyme of phosphoglucomutase. Northern (RNA) blot hybridization revealed that the GAL5 transcript level increased three- to fourfold in response to galactose and was severely repressed in
Revealing the allosterome: systematic identification of metabolite-protein interactions
Orsak T, et al.
Biochemistry, 51(1), 225-232 (2012)
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis
Bertels LK, et al.
Biomolecules, 11(5), 725-725 (2021)
The global prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis
Nkhoma ET and Poole C
Blood Cells, Molecules and Diseases, 42, 267?278-267?278 (2009)
Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease
Hecker PA, et al.
American Journal of Physiology. Heart and Circulatory Physiology, 304(4), H491-H500 (2013)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service