Skip to Content
Merck
All Photos(2)

Key Documents

932361

Sigma-Aldrich

1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene

≥99% (HPLC)

Synonym(s):

TmPyPB

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C39H27N3
CAS Number:
Molecular Weight:
537.65
MDL number:
UNSPSC Code:
12352005
NACRES:
NA.23
Assay:
≥99% (HPLC)
grade:
sublimed grade
solubility:
chloroform: soluble
dichloromethane: soluble

grade

sublimed grade

Quality Level

description

μe ≈ 1.0 x 10-3 cm2 V−1 s−1

Assay

≥99% (HPLC)

loss

0.5% TGA, > 310 °C (weight loss)

mp

195-200 °C

transition temp

Tg >310 °C ((0.5% weight loss))

solubility

chloroform: soluble
dichloromethane: soluble

fluorescence

λem 353 nm in dichloromethane (PL)

Orbital energy

HOMO 6.75 eV 
LUMO 2.75 eV 

λ

in dichloromethane

UV absorption

λ: 254 nm Amax

SMILES string

C1(C2=CC=CC(C3=CN=CC=C3)=C2)=CC(C4=CC=CC(C5=CN=CC=C5)=C4)=CC(C6=CC=CC(C7=CN=CC=C7)=C6)=C1

InChI

1S/C39H27N3/c1-7-28(34-13-4-16-40-25-34)19-31(10-1)37-22-38(32-11-2-8-29(20-32)35-14-5-17-41-26-35)24-39(23-37)33-12-3-9-30(21-33)36-15-6-18-42-27-36/h1-27H

InChI key

CINYXYWQPZSTOT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene, also known as TmPyPB, is a solution-processable electron transport / hole blocking layer (ETL / HBL) material used in organic electronics. It has a μe around 1.0 x 10-3 cm2 V−1 s−1.
1,3,5-Tri[(3-pyridyl)phen-3-yl]benzene can be employed as a component in the synthesis of luminescent materials, including organic light-emitting diodes (OLEDs) or fluorescent dyes for sensing and imaging applications. It an be used as a building block or donor material in the active layer of Organic photovoltaics (OPV) devices.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hui Wang et al.
Advanced materials (Deerfield Beach, Fla.), 26(30), 5198-5204 (2014-06-07)
Thermally activated delayed fluorescence emitters with small energy gap between the triplet and singlet (ΔEST ), TXO-PhCz and TXO-TPA, have been successfully synthesized by combining a hole-transporting TPA/PhCz moiety and an electron-transporting TXO moiety. Both compounds display efficient solid-state luminescence
Huijun Liu et al.
Angewandte Chemie (International ed. in English), 57(30), 9290-9294 (2018-06-02)
Non-doped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton use are generally unsuitable for non-doped OLEDs because of severe emission quenching and exciton annihilation in neat films.
Wei Li et al.
Angewandte Chemie (International ed. in English), 58(2), 582-586 (2018-11-21)
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in
Meng Li et al.
Angewandte Chemie (International ed. in English), 57(11), 2889-2893 (2018-01-23)
Aromatic-imide-based thermally activated delayed fluorescent (TADF) enantiomers, (+)-(S,S)-CAI-Cz and (-)-(R,R)-CAI-Cz, were efficiently synthesized by introducing a chiral 1,2-diaminocyclohexane to the achiral TADF unit. The TADF enantiomers exhibited high PLQYs of up to 98 %, small ΔEST  values of 0.06 eV, as well
Jia-Xiong Chen et al.
Angewandte Chemie (International ed. in English), 58(41), 14660-14665 (2019-07-18)
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high-efficient red organic light-emitting diodes (OLEDs) and non-doped deep red/near-infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ-PXZ and mDPBPZ-PXZ, with twisted donor-acceptor structures were designed and synthesized

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service