Skip to Content
Merck
All Photos(1)

Key Documents

436011

Sigma-Aldrich

Iron(III) phosphate dihydrate

Fe 29 %

Synonym(s):

Ferric phosphate dihydrate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
FePO4 · 2H2O
CAS Number:
Molecular Weight:
186.85
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

form

powder

Quality Level

composition

Fe, 29%

reaction suitability

core: iron
reagent type: ligand
reaction type: Cross Couplings

functional group

amine
phosphine

SMILES string

O.O.[Fe+3].[O-]P([O-])([O-])=O

InChI

1S/Fe.H3O4P.2H2O/c;1-5(2,3)4;;/h;(H3,1,2,3,4);2*1H2/q+3;;;/p-3

InChI key

BMTOKWDUYJKSCN-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

Application

Iron(III) phosphate dihydrate (FePO4 x 2H2O) can be used as a catalyst in the synthesis of:
  • 3,4-dihydropyrimidin-2(1H)-ones and thiones by reacting with aldehydes, β-ketoesters and urea/thiourea via one pot-three component Biginelli reaction.
  • Methyl methacryalate (MMA) by oxidative dehydrogenation of methyl iso-butarate (MIB).

It can be also used in the synthesis of carbon coated lithium iron phosphate (LiFePO4) as the cathode material for lithium ion batteries. It is also used as a key ingredient in preparing phosphate glass fibers.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties.
Ren Cai et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 19(5), 1568-1572 (2013-01-03)
Jun-Il Kim et al.
Journal of nanoscience and nanotechnology, 12(11), 8475-8480 (2013-02-21)
A composite of LiFePO4 and MgO-templated disordered mesoporous carbon was prepared through infiltrating a LiFePO4 precursor solution into the mesoporous carbon and growing LiFePO4 nanocrystals in the pore of the carbon. Transmission electron microscope (TEM) and scanning electron microscope (SEM)
A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers.
Bian D, et al.
Electrochimica Acta, 190, 134-140 (2016)
Preparation and Electrochemical Properties of the Spongelike Melamine Formaldehyde-Poly (vinyl alcohol)/LiFePO4 Porous Composite as the Lithium-Battery Cathode
Roddecha S, et al.
Industrial & Engineering Chemistry Research, 58(2), 632-642 (2018)
Fabian Rohner et al.
The Journal of nutrition, 137(3), 614-619 (2007-02-22)
Particle size is a determinant of iron (Fe) absorption from poorly soluble Fe compounds. Decreasing the particle size of metallic Fe and ferric pyrophosphate added to foods increases Fe absorption. The aim of this study was to develop and characterize

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service