Skip to Content
Merck
All Photos(1)

Key Documents

356891

Sigma-Aldrich

Cobalt

foil, thickness 1.0 mm, 99.95% trace metals basis

Synonym(s):

Cobalt element, Cobalt-59

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Co
CAS Number:
Molecular Weight:
58.93
EC Number:
MDL number:
UNSPSC Code:
12141710
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.95% trace metals basis

form

foil

resistivity

6.24 μΩ-cm, 20°C

thickness

1.0 mm

bp

2900 °C (lit.)

density

8.9 g/mL at 25 °C (lit.)

SMILES string

[Co]

InChI

1S/Co

InChI key

GUTLYIVDDKVIGB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Quantity

25 × 25 mm (approximately 5.6 g)
50 × 50 mm (approximately 22.4 g)

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 3 - Carc. 1B - Eye Irrit. 2 - Muta. 2 - Repr. 1A - Resp. Sens. 1 - Skin Sens. 1

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Takuya Kurahashi et al.
Inorganic chemistry, 52(7), 3908-3919 (2013-03-23)
The Co(salen)(X) complex, where salen is chiral N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine and X is an external axial ligand, has been widely utilized as a versatile catalyst. The Co(salen)(X) complex is a stable solid that has been conventionally described as a Co(III)(salen)(X) complex. Recent
Pushya A Potnis et al.
Cellular immunology, 282(1), 53-65 (2013-05-18)
Metal orthopedic implant debris-induced osteolysis of hip bone is a major problem in patients with prosthetic-hips. Although macrophages are the principal targets for implant-wear debris, the receptor(s) and mechanisms underlying these responses are not fully elucidated. We examined whether the
H John Cooper et al.
The Journal of bone and joint surgery. American volume, 95(10), 865-872 (2013-05-17)
Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the
Markus Mandl et al.
Biochemical and biophysical research communications, 434(1), 166-172 (2013-04-02)
Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this
Jeannette Ø Penny et al.
Acta orthopaedica, 84(2), 130-137 (2013-04-20)
Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) and investigated

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service