Saltar al contenido
Merck

In vivo bioluminescence imaging for viable human neural stem cells incorporated within in situ gelatin hydrogels.

EJNMMI research (2015-06-28)
Do Won Hwang, Kyung Min Park, Hye-Kyung Shim, Yeona Jin, Hyun Jeong Oh, So Won Oh, Song Lee, Hyewon Youn, Yoon Ki Joung, Hong J Lee, Seung U Kim, Ki Dong Park, Dong Soo Lee
RESUMEN

Three-dimensional (3D) hydrogel-based stem cell therapies contribute to enhanced therapeutic efficacy in treating diseases, and determining the optimal mechanical strength of the hydrogel in vivo is important for therapeutic success. We evaluated the proliferation of human neural stem cells incorporated within in situ-forming hydrogels and compared the effect of hydrogels with different elastic properties in cell/hydrogel-xenografted mice. The gelatin-polyethylene glycol-tyramine (GPT) hydrogel was fabricated through enzyme-mediated cross-linking reaction using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The F3-effluc encapsulated within a soft 1,800 pascal (Pa) hydrogel and stiff 5,800 Pa hydrogel proliferated vigorously in a 24-well plate until day 8. In vitro and in vivo kinetics of luciferase activity showed a slow time-to-peak after D-luciferin administration in the stiff hydrogel. When in vivo proliferation of F3-effluc was observed up to day 21 in both the hydrogel group and cell-only group, F3-effluc within the soft hydrogel proliferated more vigorously, compared to the cells within the stiff hydrogel. Ki-67-specific immunostaining revealed highly proliferative F3-effluc with compactly distributed cell population inside the 1,800 Pa or 5,800 Pa hydrogel. We examined the in vivo effectiveness of different elastic types of hydrogels encapsulating viable neural stem cells by successfully monitoring the proliferation of implanted stem cells incorporated within a 3D hydrogel scaffold.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Óxido de alúmina, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
4-Nitrophenyl chloroformate, 96%
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Óxido de alúmina, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Óxido de alúmina, 99.997% trace metals basis
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Peróxido de hidrógeno solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Triethylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Óxido de alúmina, single crystal substrate, <0001>
Sigma-Aldrich
Óxido de alúmina, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Aluminum oxide, mesostructured, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Óxido de alúmina, CP
Sigma-Aldrich
Triethylamine, SAJ first grade, ≥98.0%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
L-Lysine monohydrochloride, SAJ special grade, ≥99.0%