Saltar al contenido
Merck
Todas las fotos(1)

Documentos clave

SML3140

Sigma-Aldrich

GsMTx4 trifluoroacetate

≥85% (HPLC), powder, TRPC1 and TRPC6 inhibitor

Sinónimos:

1-amino-Cy5-glucose, Cyanine-based 1-amino-1-deoxy-β-glucose conjugate, Cy5-linked 1amino-glucose, GCLEFWWKCNPNDDKCCRPKLKCSKLFKLCNFSF-NH2 trifluoroacetate(Disulfide: 2-17, 9-23, 16-30), Gly-Cys-Leu-Glu-Phe-Trp-Trp-Lys-Cys-Asn-Pro-Asn-Asp-Asp-Lys-Cys-Cys-Arg-Pro-Lys-Leu-Lys-Cys-Ser-Lys-Leu-Phe-Lys-Leu-Cys-Asn-Phe-Ser-Phe-NH2 trifluoroacetate (Disulfide: 2-17, 9-23, 16-30), Grammostola Mechanotoxin #4 trifluoroacetate, GsMTx-4 trifluoroacetate, L-GsMTx trifluoroacetate

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

UNSPSC Code:
12352200
NACRES:
NA.77

product name

GsMTx4 trifluoroacetate, ≥85% (HPLC)

Quality Level

assay

≥85% (HPLC)

form

powder

color

white to beige

storage temp.

−20°C

General description

Grammostola mechanotoxin #4 (GsMTx4), a gating modifier peptide, is obtained from spider venom. This 34-amino-acid peptide is a small (3-5 kD) amphipathic molecule built on a conserved inhibitory cysteine-knot (ICK) backbone. The structure of GsMTx4 has a belt of charged residues surrounding a hydrophobic patch. GsMTx4 acts as an inhibitor of cationic mechanosensitive channels (MSCs) belonging to the Piezoand transient receptor potential (TRP) channel families. It is different from other spider venom peptides because it can inhibit these channels regardless of their shape, and both its L- and D-forms can have this effect. GsMTx4 has a unique structure and carries a positive charge due to its six lysine residues which can affect membrane binding. This peptide has become a valuable tool in research to identify the roles of excitatory MSCs in normal physiology and pathology. It can also inhibit stretch-activated big potassium channels (SAKcaC). The presence of positively charged residues in GsMTx4 is thought to play a role in peptide channel-lipid interaction. It can effectively reduce arrhythmias by inhibiting stretch-activated channels (SACs) in the heart. GsMTx4 also serves as an inhibitor of histone acetylation inhibitor I-BET 762 and Piezo 1 inhibitor.

Application

GsMTx4 trifluoroacetate has been used in drug treatment as a supplement in cell culture medium to treat mouse hippocampal neurons to block cationic MSCs in cortical neurons. It has also been used as a specific inhibitor to incubate cementoblasts to study its effects on the response of cementoblasts to investigate if cementum repair was impaired by compression.

Biochem/physiol Actions

GsMTx4 (Grammostola Mechanotoxin #4) is a tarantula venom-derived 34-mer amphipathic cysteine knot peptide that exerts its cationic mechanosensitive channels (MSCs; stretch-gated ion channels or SACs) modulatory activity by changing local membrane properties near the channels. GsMTx4 negatively regulates TRPC1/5/6 and Piexo1/2, while potentiating TREK-1 and TRPA1 activity. In addition, GsMTx4 can either hamper (2-4 μM) or facilitate (12-20 μM) the gating of prokaryotic E. coli cytoplasmic membrane MscS and MscK in a biphasic manner. GsMTx4 is also reported to inhibit Nav1.1 (SCN1A), Nav1.2 (SCN2A), Nav1.3 (SCN3A), Nav1.4 (SCN4A), Nav1.5 (SCN5A), Nav1.6 (SCN8A), Nav1.7 (SCN9A), hERG1/2/3 (KCNH2/6/7), but not hKV1.1 (KCNA1) or hKV1.4 (KCNA4).

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Two types of peptides derived from the neurotoxin GsMTx4 inhibit a mechanosensitive potassium channel by modifying the mechanogate
Zhou N, et al.
The Journal of biological chemistry (2022)
Chilman Bae et al.
Biochemistry, 50(29), 6295-6300 (2011-06-24)
Cells can respond to mechanical stress by gating mechanosensitive ion channels (MSCs). The cloning of Piezo1, a eukaryotic cation selective MSC, defines a new system for studying mechanical transduction at the cellular level. Because Piezo1 has electrophysiological properties similar to
Elisa Redaelli et al.
The Journal of biological chemistry, 285(6), 4130-4142 (2009-12-04)
Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12
Robrecht Lembrechts et al.
American journal of respiratory cell and molecular biology, 47(3), 315-323 (2012-03-31)
In rodent lungs, a major part of the myelinated vagal airway afferents selectively contacts pulmonary neuroepithelial bodies (NEBs). Because most myelinated vagal airway afferents concern physiologically characterized mechanoreceptors, the present study aimed at unraveling the potential involvement of NEB cells
Radhakrishnan Gnanasambandam et al.
Biophysical journal, 112(1), 31-45 (2017-01-12)
GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (MSCs). It has six lysine residues that have been proposed to affect membrane binding. We synthesized six analogs with single lysine-to-glutamate substitutions and tested them against Piezo1 channels in

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico