19359
Glucose dehydrogenase from Pseudomonas sp.
powder, white, ≥200 U/mg
Sinónimos:
GDH
Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización
About This Item
Productos recomendados
biological source
bacterial (Pseudomonas spp.)
Quality Level
form
powder
specific activity
≥200 U/mg
greener alternative product characteristics
Waste Prevention
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
color
white
greener alternative category
, Enabling
storage temp.
−20°C
General description
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and waste prevention when used in biofuel cell research. For more information see the article in biofiles.
Application
Glucose dehydrogenase from Pseudomonas sp. has been used for the oxidation of glucose as a part of flow-injection analysis detection. It has also been used to regenerate the consumed nicotinamide adenine dinucleotide (NADH) during the removal of pyruvate by lactate dehydrogenase.
Biochem/physiol Actions
In bacteria, the membrane integrated glucose dehydrogenase catalyses the conversion of glucose to gluconic acid. It uses pyrroloquinoline quinone as a coenzyme. The intracellular glucose dehydrogenase lack this cofactor. It is a nicotinamide adenine dinucleotide (NADH) dependent enzyme.
Unit Definition
One unit corresponds to the amount of enzyme which will oxidizes 1 μmole β-D-glucose to D-glucono-δ-lactone per minute at pH 8.0 and 37 °C
Storage Class
11 - Combustible Solids
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Elija entre una de las versiones más recientes:
¿Ya tiene este producto?
Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.
Analytical chemistry, 84(1), 334-341 (2011-11-19)
A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on
Journal of diabetes science and technology, 5(5), 1108-1115 (2011-10-27)
A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article
Basic Biotechnology, 370-370 (2006)
Enzyme and microbial technology, 50(6-7), 331-336 (2012-04-17)
The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of
Enzyme and microbial technology, 50(4-5), 227-232 (2012-03-16)
Amperometric glucose biosensors utilizing commercially available FAD-dependent glucose dehydrogenases from two strains of Aspergillus species are described. Enzymes were immobilized on nanocomposite electrode consisting of multi-walled carbon nanotubes by entrapment between chitosan layers. Unlike the common glucose oxidase based biosensor
Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.
Póngase en contacto con el Servicio técnico