Saltar al contenido
Merck

14502

Sigma-Aldrich

Poly(ethylene glycol) bis(amine)

Mw 3,000, carboxyl reactive, amine

Sinónimos:

Polyethylene glycol, O,O′-Bis(2-aminoethyl)polyethylene glycol, Diaminopolyethylene glycol, PEG-diamine, Polyoxyethylene bis(amine)

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
H2N(CH2CH2O)nCH2CH2NH2
Número de CAS:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Nombre del producto

Poly(ethylene glycol) bis(amine), Mw 3,000

mol wt

Mw 3,000

Quality Level

reaction suitability

reagent type: cross-linking reagent
reactivity: carboxyl reactive

Ω-end

amine

α-end

amine

polymer architecture

shape: linear
functionality: homobifunctional

SMILES string

NCCOCCOCCN

InChI

1S/C6H16N2O2/c7-1-3-9-5-6-10-4-2-8/h1-8H2

InChI key

IWBOPFCKHIJFMS-UHFFFAOYSA-N

¿Está buscando productos similares? Visita Guía de comparación de productos

Storage Class

10 - Combustible liquids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

C S Lee et al.
Artificial organs, 21(9), 1002-1006 (1997-09-01)
Various modifications of alginate-poly-L-lysine microcapsules were made, such as the inclusion of polyethylenimine (PEI) or carboxyl methyl cellulose (CMC) in the core and the coating of bis(polyoxyethylene bis[amine]) (PEGA) onto the microcapsule membrane surface. A characterization of the modified microcapsules
Stephen J Connon et al.
Bioorganic & medicinal chemistry letters, 12(14), 1873-1876 (2002-06-28)
The synthesis and olefin metathesis activity in protic solvents of 7, a phosphine-free ruthenium alkylidene bound to a hydrophilic solid support are reported. This heterogeneous catalyst promotes relatively efficient ring closing- and cross-metathesis reactions in both methanol and water. The
Alison G Patrick et al.
Macromolecular bioscience, 10(10), 1184-1193 (2010-07-02)
The design of hydrogels that simultaneously report protease activity and remove excess protease from solution is elucidated. The hydrogels, based on amino-PEGA, combine enzyme-specific peptides flanked with FRET complimented by charged amino acid residues that facilitate protease uptake via short
Gaëlle-Anne Cremer et al.
Journal of peptide science : an official publication of the European Peptide Society, 12(6), 437-442 (2006-01-25)
This paper describes the optimization of a synthesis of a difficult sequence related to a 12-mer sequence of a Pan DR epitope (PADRE). Elongation was followed by on-line monitoring of the N(alpha)-Fmoc removal adapted for the batch methodology. Studying the
Emmanuelle Bays et al.
Biomacromolecules, 10(7), 1777-1781 (2009-06-10)
Maleimide end functionalized polymers for site-selective conjugation to free cysteines of proteins were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. A furan-protected maleimide chain transfer agent (CTA) was employed in the RAFT polymerization of poly(ethylene glycol) methyl ether acrylate

Artículos

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Ver todo

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico