GF84840004
Silicon
sheet, 14x14mm, thickness 1.0mm, single crystal, -111, 100%
Synonym(s):
Silicon, SI003101
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Assay
100%
form
foil
manufacturer/tradename
Goodfellow 848-400-04
size × thickness
14 x 14 mm × 1.0 mm
bp
2355 °C (lit.)
mp
1410 °C (lit.)
density
2.33 g/mL at 25 °C (lit.)
SMILES string
[Si]
InChI
1S/Si
InChI key
XUIMIQQOPSSXEZ-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Journal of nanoscience and nanotechnology, 14(7), 4832-4836 (2014-04-25)
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with
Therapeutic delivery, 4(7), 811-823 (2013-07-26)
Porous silicon (pSi) is a nanostructured carrier system that has received considerable attention over the past 10 years, for use in a wide variety of biomedical applications, including biosensing, biomedical imaging, tissue scaffolds and drug delivery. This interest is due
Frontiers in bioscience (Elite edition), 5, 955-965 (2013-06-12)
In modern life, technologies enabling detection of biological molecules at a low threshold, for health and ecological concerns, are in high demand. Directly interrogating the molecules is a promising direction to clarify the noisy response of conventional assays arising from
Journal of nanoscience and nanotechnology, 14(6), 4409-4417 (2014-04-18)
The aim of the present study was to prepare resorbable hydroxyapatite (HA) based bone graft materials reinforced with carbon nanotubes as a way to cope with the inability of pure HA to resorb and its intrinsic brittleness and poor strength
Journal of nanoscience and nanotechnology, 14(6), 4178-4184 (2014-04-18)
The analytical electrical transport model of the Silicene, a single layer of sp3 bonded silicon atoms in the honeycomb lattice structure as a channel in the field effect transistor configuration is presented in this paper. Although the carrier concentration of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service