Lithium bis(trimethylsilyl)amide is commonly used in organic synthesis as a non-nucleophilic strong Bronsted base. It is soluble in most nonpolar solvents such as aromatic hydrocarbons, hexanes, and THF.
Application
Lithium bis(trimethylsilyl)amide can be used as a reagent:
In the deprotonation and nucleophilic difluoromethylation reactions.
3-methoxy substituted dihydropyrrole derivatives by reacting with aldehydes and lithiated methoxyallene via in situ formations of N-trimethylsilylated imines.
In Darzens condensation and directed aldol condensation reactions.
To synthesize poly(N-octyl-p-benzamide)s by chain-growth polycondensation of 4-octylaminobenzoic acid methyl ester.
Dental materials : official publication of the Academy of Dental Materials, 25(6), 729-735 (2009-01-29)
The objectives of this study were to assess demineralized dentin porosity and quantify the different porous features distribution within the material using mercury intrusion porosimetry (MIP) technique. We compared hexamethyldisilazane (HMDS) drying and lyophilization (LYO) (freeze-drying) in sample preparation. Fifty-six
Journal of microbiological methods, 90(2), 96-99 (2012-05-09)
The use of hexamethyldisilazane (HMDS) as a drying agent was investigated in the specimen preparation for scanning electron microscopy (SEM) imaging of bacterial surface colonization on sub-bituminous coal. The ability of microbes to biofragment, ferment and generate methane from coal
High-density live cell array serves as a valuable tool for the development of high-throughput immunophenotyping systems and cell-based biosensors. In this paper, we have, for the first time, demonstrated a simple fabrication process to form the hexamethyldisilazane (HMDS) and poly(ethylene
Chemical communications (Cambridge, England), 47(38), 10761-10763 (2011-08-30)
A silica microsphere suspension and a silica sol are employed in a two-step dipping process for the preparation of a superhydrophobic surface. It's not only a facile way to achieve the lotus effect, but can also create a multi-functional surface
Journal of the American Chemical Society, 131(38), 13860-13869 (2009-09-10)
Full details of an anti-selective catalytic asymmetric nitroaldol reaction promoted by a heterobimetallic catalyst comprised of Nd(5)O(O(i)Pr)(13), an amide-based ligand, and NaHMDS (sodium hexamethyldisilazide) are described. A systematic synthesis and evaluation of amide-based ligands led to the identification of optimum
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.