Skip to Content
MilliporeSigma
  • Dependence of the conformational state of the isolated adenine nucleotide carrier protein on the detergent used for solubilization.

Dependence of the conformational state of the isolated adenine nucleotide carrier protein on the detergent used for solubilization.

Biochemistry (1986-01-28)
M R Block, P V Vignais
ABSTRACT

The mitochondrial adenine nucleotide (AdN) carrier can assume two conformational states that are trapped by the specific inhibitors of AdN transport carboxyatractyloside (CATR) and bongkrekic acid (BA). When the AdN carrier protein was extracted from beef heart mitochondria by the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio)]-1-propanesulfonate (CHAPS) and purified in the same detergent, the fluorescence of the tryptophanyl residue(s) of the protein was partially quenched by ATP (or ADP), but not by nontransportable nucleotides; CATR, which alone was ineffective, was able in the presence of ATP (ADP) to further quench the fluorescence, and BA reversed the quenched fluorescence to the original level. With 3'-O-naphthoyl-ATP (N-ATP) as an extrinsic fluorescence probe, it was shown that BA could release bound N-ATP but that CATR was ineffective. These results indicate that the AdN carrier in CHAPS is able to react readily with BA, but not with CATR. The opposite situation occurs with the carrier solubilized and purified in (laurylamido)-N,N-dimethylpropylamine oxide (LAPAO) [Brandolin, G., Dupont, Y., & Vignais, P.V. (1985) Biochemistry 24, 1991-1997]. These data taken together were interpreted to mean that the CATR and BA conformations of the isolated AdN carrier depend on the micellar structure in which it is embedded; the carrier in LAPAO is in the CATR conformation, and the carrier in CHAPS is in the BA conformation. For the transition between the CATR and BA conformations to occur in the carrier in CHAPS and in the carrier in LAPAO, ATP or ADP is required; nontransportable nucleotides were ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)