Skip to Content
MilliporeSigma
  • Emergent Properties of an Organic Semiconductor Driven by its Molecular Chirality.

Emergent Properties of an Organic Semiconductor Driven by its Molecular Chirality.

ACS nano (2017-07-12)
Ying Yang, Beth Rice, Xingyuan Shi, Jochen R Brandt, Rosenildo Correa da Costa, Gordon J Hedley, Detlef-M Smilgies, Jarvist M Frost, Ifor D W Samuel, Alberto Otero-de-la-Roza, Erin R Johnson, Kim E Jelfs, Jenny Nelson, Alasdair J Campbell, Matthew J Fuchter
ABSTRACT

Chiral molecules exist as pairs of nonsuperimposable mirror images; a fundamental symmetry property vastly underexplored in organic electronic devices. Here, we show that organic field-effect transistors (OFETs) made from the helically chiral molecule 1-aza[6]helicene can display up to an 80-fold difference in hole mobility, together with differences in thin-film photophysics and morphology, solely depending on whether a single handedness or a 1:1 mixture of left- and right-handed molecules is employed under analogous fabrication conditions. As the molecular properties of either mirror image isomer are identical, these changes must be a result of the different bulk packing induced by chiral composition. Such underlying structures are investigated using crystal structure prediction, a computational methodology rarely applied to molecular materials, and linked to the difference in charge transport. These results illustrate that chirality may be used as a key tuning parameter in future device applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trichloro(octadecyl)silane, ≥90%
Sigma-Aldrich
2,3,4,5,6-Pentafluorothiophenol, 97%