Skip to Content
MilliporeSigma
  • Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response.

Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response.

PloS one (2015-06-16)
Christoph Schell, Oliver Kretz, Andreas Bregenzer, Manuel Rogg, Martin Helmstädter, Ulrike Lisewski, Michael Gotthardt, Pierre-Louis Tharaux, Tobias B Huber, Florian Grahammer
ABSTRACT

The coxsackie- and adenovirus receptor (CXADR) is a member of the immunoglobulin protein superfamily, present in various epithelial cells including glomerular epithelial cells. Beside its known function as a virus receptor, it also constitutes an integral part of cell-junctions. Previous studies in the zebrafish pronephros postulated a potential role of CXADR for the terminal differentiation of glomerular podocytes and correct patterning of the elaborated foot process architecture. However, due to early embryonic lethality of constitutive Cxadr knockout mice, mammalian data on kidney epithelial cells have been lacking. Interestingly, Cxadr is robustly expressed during podocyte development and in adulthood in response to glomerular injury. We therefore used a conditional transgenic approach to elucidate the function of Cxadr for podocyte development and stress response. Surprisingly, we could not discern a developmental phenotype in podocyte specific Cxadr knock-out mice. In addition, despite a significant up regulation of CXADR during toxic, genetic and immunologic podocyte injury, we could not detect any impact of Cxadr on these injury models. Thus these data indicate that in contrast to lower vertebrate models, mammalian podocytes have acquired molecular programs to compensate for the loss of Cxadr.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Nitrotetrazolium Blue chloride, ≥90.0% (HPLC)
Sigma-Aldrich
Nitrotetrazolium Blue chloride, powder, electrophoresis grade
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Anti-CXADR antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis