Skip to Content
MilliporeSigma
  • Identification and Assessment of Octreotide Acylation in Polyester Microspheres by LC-MS/MS.

Identification and Assessment of Octreotide Acylation in Polyester Microspheres by LC-MS/MS.

Pharmaceutical research (2015-04-03)
Mehrnoosh Shirangi, Wim E Hennink, Govert W Somsen, Cornelus F van Nostrum
ABSTRACT

Polyesters with hydrophilic domains, i.e., poly(D,L-lactic-co-glycolic-co-hydroxymethyl glycolic acid) (PLGHMGA) and a multiblock copolymer of poly(ε-caprolactone)-PEG-poly(ε-caprolactone) and poly(L-lactide) ((PC-PEG-PC)-(PL)) are expected to cause less acylation of encapsulated peptides than fully hydrophobic matrices. Our purpose is to assess the extent and sites of acylation of octreotide loaded in microspheres using tandem mass spectrometry analysis. Octreotide loaded microspheres were prepared by a double emulsion solvent evaporation technique. Release profiles of octreotide from hydrophilic microspheres were compared with that of PLGA microspheres. To scrutinize the structural information and localize the actual modification site(s) of octreotide, liquid chromatography ion-trap mass spectrometry (LC-ITMS) was performed on the acylated adducts. Hydrophilic microspheres showed less acylated adducts in comparison with PLGA microspheres. LC-MS/MS showed that besides the N-terminus and primary amine of lysine, the primary hydroxyl of the end group of octreotide was also subjected to acylation. Nucleophilic attack of the peptide can also occur to the carbamate bond presented in (PC-PEG-PC)-(PL) since 1,4-butanediisocyanate was used as the chain extender. Hydrophilic polyesters are promising systems for controlled release of peptide because substantially less acylation occurs in microspheres based on these polymers. LC-ITMS provided detailed structural information of octreotide modifications via mass analysis of ion fragments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium phosphate monobasic monohydrate, BioXtra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
di-Sodium hydrogen phosphate dihydrate, BioUltra, for molecular biology, ≥99.0% (T)
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Sodium azide, BioXtra
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodium azide, SAJ first grade, ≥97.0%
Sigma-Aldrich
Sodium phosphate monobasic monohydrate, BioReagent, suitable for electrophoresis, 98.0-102.0%
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dichloromethane, SAJ first grade, ≥99.0%
Sigma-Aldrich
Formic acid, JIS special grade, ≥98.0%
Supelco
Dichloromethane solution, contains 10 % (v/v) methanol
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Supelco
Dichloromethane, ≥99.9%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Octreotide, ≥98% (HPLC)
Sigma-Aldrich
Dichloromethane, JIS special grade, ≥99.0%