Skip to Content
MilliporeSigma
  • NRF2 Pathway Activation and Adjuvant Chemotherapy Benefit in Lung Squamous Cell Carcinoma.

NRF2 Pathway Activation and Adjuvant Chemotherapy Benefit in Lung Squamous Cell Carcinoma.

Clinical cancer research : an official journal of the American Association for Cancer Research (2015-03-06)
David W Cescon, Desmond She, Shingo Sakashita, Chang-Qi Zhu, Melania Pintilie, Frances A Shepherd, Ming-Sound Tsao
ABSTRACT

Genomic profiling of lung squamous cell carcinomas (SCC) has identified NRF2 pathway alterations, which activate oxidative response pathways, in one third of tumors. Preclinical data suggest these tumors may be resistant to platinum-based chemotherapy. We evaluated the clinical relevance of these findings and assessed whether NRF2 activation predicts benefit from adjuvant chemotherapy in SCC. Logistic regression (LR) and significance analysis of microarrays (SAM) were applied to all 104 TCGA (The Cancer Genome Atlas) SCC cases that had microarray gene expression and mutation data to identify genes associated with somatic NRF2 pathway alterations. The resulting signature (NRF2(ACT)) was tested in 3 independent SCC datasets to evaluate its prognostic and predictive effects. IHC and sequencing for NRF2 and KEAP1 were evaluated in one cohort (n = 43) to assess the relationship between gene expression, mutational status, and protein expression. Twenty-eight genes were identified by overlap between LR (291 genes) and SAM (30 genes), and these consistently separated SCC into 2 groups in all datasets, corresponding to putatively NRF pathway-activated and wild-type (WT) tumors. NRF2(ACT) was not prognostic. However, improved survival with adjuvant chemotherapy in the JBR.10-randomized trial appears limited to patients with the WT signature (HR 0.32, P = 0.16; NRF2(ACT) HR 2.28, P = 0.48; interaction P = 0.15). NRF2(ACT) was highly correlated with mutations in NRF2 and KEAP1, and with high NRF2 protein expression. A gene expression signature of NRF2 pathway activation is associated with benefit from adjuvant cisplatin/vinorelbine in SCC. Patients with NRF2 pathway-activating somatic alterations may have reduced benefit from this therapy.

MATERIALS
Product Number
Brand
Product Description

Supelco
N,N′-Bis(acryloyl)cystamine, BioReagent, suitable for electrophoresis
Sigma-Aldrich
Ammonium hydrogen difluoride, SAJ special grade, ≥98.5%
Sigma-Aldrich
Ammonium hydrogen difluoride, 99.999% trace metals basis