Skip to Content
MilliporeSigma
  • Excitatory Postrhinal Projections to Principal Cells in the Medial Entorhinal Cortex.

Excitatory Postrhinal Projections to Principal Cells in the Medial Entorhinal Cortex.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-12-04)
Noriko Koganezawa, Ragnhild Gisetstad, Ellen Husby, Thanh P Doan, Menno P Witter
ABSTRACT

The postrhinal cortex (POR) provides substantial input to the entorhinal cortex, mainly targeting superficial layers of the medial entorhinal cortex (MEC). Major inputs to POR originate in the visual and parietal cortex, thus providing neurons in MEC with a subset of cortical information relevant to their spatial firing properties. The POR takes a position that is comparable with that of the perirhinal cortex (PER) with regard to the lateral entorhinal cortex (LEC). Neurons in LEC and MEC show different functional properties likely reflecting differences in their respective inputs. Projections from PER to LEC exert a main inhibitory influence, which may relate to the sparse object-selective firing in LEC. In view of the continuous, spatially modulated firing properties of principal neurons in MEC, we tested in rats the hypothesis that projections from POR to MEC are functionally different from the PER-to-LEC counterpart in providing an excitatory drive to MEC. Our combined confocal and quantitative electron-microscopic observations indicated that POR projections target mainly principal cells in MEC, including neurons that project to the hippocampus. The ultrastructure of the majority of the synapses indicated that they are excitatory. Voltage-sensitive dye imaging in sagittal slices confirmed this morphologically derived conclusion, showing that the MEC network always responded with an overall depolarization, indicative for net excitatory transmission. In vitro single-cell recordings from principal cells showed only excitatory responses upon POR stimulation. These results show that POR provides an excitatory projection to MEC, differing fundamentally from the inhibitory projection of PER to LEC.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.05 M
Sigma-Aldrich
Potassium chloride solution, 0.01 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Potassium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium hydroxide solution, 0.2 M
Sigma-Aldrich
Sodium hydroxide, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
D.E.R. 332, used as embedding medium
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O