Skip to Content
MilliporeSigma
  • Formulation and characterization of lyophilized curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): studies on curcumin and curcuminoids LII.

Formulation and characterization of lyophilized curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): studies on curcumin and curcuminoids LII.

Drug development and industrial pharmacy (2014-05-21)
Kristine Opsvik Wikene, Anne Bee Hegge, Ellen Bruzell, Hanne Hjorth Tønnesen
ABSTRACT

Bacterial resistance to antibiotics is increasing and alternative antibacterial treatments like antimicrobial photodynamic therapy (aPDT) are needed. Curcumin is under investigation as a potential photosensitizer in aPDT. The purpose of this study was to develop rapidly dissolving formulations of curcumin that could photoinactivate both Gram-positive and Gram-negative bacteria. Curcumin solid dispersions with methyl-β-cyclodextrin and hyaluronic acid (HA), hydroxypropyl methylcellulose (HPMC) or both HA and HPMC were prepared through lyophilization. The lyophilizates were characterized by curcumin drug load [% (w/w)], differential scanning calorimetry, photostability, thermal stability, their ability to form supersaturated solutions and by in vitro photoinactivation of Enterococcus faecalis and Escherichia coli. The lyophilizates were amorphous solid dispersions with a curcumin drug load in the range of 1.4-5.5% (w/w) depending on the included polymer and the ratio between curcumin and the cyclodextrin. The lyophilizates were photolabile, but thermally stable and dissolved rapidly in contact with water to form supersaturated solutions. Selected lyophilizates demonstrated >log 6 reduction of colony forming units/ml of both E. faecalis and E. coli after exposure to low curcumin concentrations (0.5-10 µM) and blue light dose (11-16 J/cm(2)). The high drug load of the lyophilizates, rapid dissolution, ability to form relatively stable supersaturated solutions and the very high phototoxicity towards both E. faecalis and E. coli make these lyophilizates suitable for in vivo aPDT. This treatment with optimized curcumin formulations should be explored as an alternative to topical antibiotics in the treatment of wound infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Citric acid monohydrate, JIS special grade, ≥99.5%
Sigma-Aldrich
Citric acid monohydrate, ≥99.5%, suitable for amino acid analysis
Sigma-Aldrich
Citric acid monohydrate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., buffer substance, 99.5-102%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Curcumin, ≥94% (curcuminoid content), ≥80% (Curcumin)
Sigma-Aldrich
Citric acid monohydrate, reagent grade, ≥98% (GC/titration)
Sigma-Aldrich
Curcumin, from Curcuma longa (Turmeric), powder
Sigma-Aldrich
Citric acid monohydrate, ACS reagent, ≥99.0%
Sigma-Aldrich
Citric acid monohydrate, BioXtra, ≥99.5%
Sigma-Aldrich
Citric acid monohydrate, SAJ first grade, ≥99.5%