Skip to Content
MilliporeSigma
  • A Novel Microbisporicin Producer Identified by Early Dereplication during Lantibiotic Screening.

A Novel Microbisporicin Producer Identified by Early Dereplication during Lantibiotic Screening.

BioMed research international (2015-09-09)
Lucia Carrano, Monica Abbondi, Paola Turconi, Gianpaolo Candiani, Flavia Marinelli
ABSTRACT

With the increasing need of effective antibiotics against multi-drug resistant pathogens, lantibiotics are an attractive option of a new class of molecules. They are ribosomally synthetized and posttranslationally modified peptides possessing potent antimicrobial activity against aerobic and anaerobic Gram-positive pathogens, including those increasingly resistant to β-lactams and glycopeptides. Some of them (actagardine, mersacidin, planosporicin, and microbisporicin) inhibit cell wall biosynthesis in pathogens and their effect is not antagonized by vancomycin. Hereby, we apply an efficient strategy for lantibiotic screening to 240 members of a newly described genus of filamentous actinomycetes, named Actinoallomurus, that is considered a yet-poorly-exploited promising source for novel bioactive metabolites. By combining antimicrobial differential assay against Staphylococcus aureus and its L-form (also in the presence of a β-lactamase cocktail or Ac-Lys-D-alanyl-D-alanine tripeptide), with LC-UV-MS dereplication coupled with bioautography, a novel producer of the potent microbisporicin complex was rapidly identified. Under the commercial name of NAI-107, it is currently in late preclinical phase for the treatment of multi-drug resistant Gram-positive pathogens. To our knowledge, this is the first report on a lantibiotic produced by an Actinoallomurus sp. and on a microbisporicin producer not belonging to the Microbispora genus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Nicotinic acid, SAJ special grade, ≥99.5%
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Pyridoxal hydrochloride, ≥99.5% (T)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
4-Aminobenzoic acid, purified by sublimation, ≥99%
Sigma-Aldrich
Nicotinic acid, ≥99.5% (HPLC)
Sigma-Aldrich
Pyridoxal hydrochloride, 99%
Sigma-Aldrich
4-Aminobenzoic acid, ReagentPlus®, 99%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
(−)-Riboflavin, meets USP testing specifications
Sigma-Aldrich
(−)-Riboflavin, from Eremothecium ashbyii, ≥98%
Sigma-Aldrich
Nicotinic acid, ≥98%
Sigma-Aldrich
Penicillinase from Bacillus cereus, lyophilized powder, 1,500-3,000 units/mg protein (using benzylpenicillin)
Sigma-Aldrich
Nicotinic acid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥98%