Skip to Content
MilliporeSigma
  • Radiation-induced metabolomic changes in sterile male Μοnochamus alternatus (Coleoptera: Cerambycidae).

Radiation-induced metabolomic changes in sterile male Μοnochamus alternatus (Coleoptera: Cerambycidae).

Journal of insect science (Online) (2014-11-05)
L J Qu, L J Wang, Y A Zhang, Q H Wang, Y Z Wang, T H Zhao, W Z Cai
ABSTRACT

Radiation-induced sterile insect technique is a biologically based, environment-friendly method for the suppression or eradication of a number of insect pests. Although the basic mechanisms underlying the technology have been well studied, little is known about the cell responses in organisms. Characterization of the metabolic shift associated with radiation exposure in sterile insects would be helpful for understanding the detailed mechanism underlying this technique and promote its practical application. In this article, a metabolomic study was performed to characterize the global metabolic changes induced by radiation using untreated and 40 Gy (60)Coγ-irradiated testes of Japanese pine sawyer, Monochamus alternatus Hope. Differential metabolites were detected and tentatively identified. Many key metabolites in glycolysis and the tricarboxylic acid cycle, as well as most fatty and amino acids, were elevated in irradiated male M. alternatus, presumably resulting from depression of glycolysis and the tricarboxylic acid cycle, each of which are important pathways for energy generation Adenosine Triphosphate (ATP) in insect spermatozoa. The findings in this article will contribute to our knowledge of the characteristic metabolic changes associated with irradiation sterility and understand the molecular mechanisms underlying radiation-induced sterile insect technique.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Adonitol, BioXtra, ≥99.0% (HPLC)
Supelco
Chloroform, analytical standard
Supelco
Nonadecanoic acid, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Adonitol, ≥99%
Sigma-Aldrich
Nonadecanoic acid, ≥98% (GC)
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%