Skip to Content
MilliporeSigma
  • Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells.

Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells.

Tissue engineering. Part A (2014-04-08)
Amr A Abdeen, Jared B Weiss, Junmin Lee, Kristopher A Kilian
ABSTRACT

The secretion of trophic factors that promote angiogenesis from mesenchymal stem cells (MSCs) is a promising cell-based therapeutic treatment. However, clinical efficacy has proved variable, likely on account of ill-defined cell delivery formulations and the inherent complexity of cellular secretion. Here we show how controlling the mechanical properties and protein composition of the extracellular matrix (ECM) surrounding MSCs can guide proangiogenic signaling. Conditioned media from MSCs adherent to polyacrylamide hydrogel functionalized with fibronectin, collagen I, or laminin was applied to 3D matrigel cultures containing human microvascular endothelial cells (HMVECs). The degree of tubulogenesis in HMVECs is shown to depend on both the substrate rigidity and matrix protein composition. MSCs cultured on fibronectin-modified hydrogels show a stiffness dependence in proangiogenic signaling with maximum influence on tubulogenesis observed from 40 kPa conditioned media, twofold higher than commercially available cocktails of growth factors. Quantitative real-time-polymerase chain reaction reveals stiffness-dependent expression of multiple factors involved in angiogenesis that corroborate the functional tubulogenesis assay. Restricting cell spreading with micropatterned surfaces attenuates the conditioned media effects; however, small-molecule inhibitors of actomyosin contractility do not significantly reduce the functional outcome. This work demonstrates how controlling matrix rigidity and protein composition can influence the secretory profile of MSCs. Model systems that deconstruct the physical and biochemical cues involved in MSC secretion may assist in the design of hydrogel biomaterials for cell-based therapies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Poly(dimethylsiloxane), viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
Hexamethyldisiloxane, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
Hydrazine hydrate, reagent grade, N2H4 50-60 %
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%