Skip to Content
MilliporeSigma
  • Investigations on the transfer of porphyrin from o/w emulsion droplets to liposomes with two different methods.

Investigations on the transfer of porphyrin from o/w emulsion droplets to liposomes with two different methods.

Drug development and industrial pharmacy (2013-10-30)
Mohamed Dawoud
ABSTRACT

Due to their small particle size, colloidal fat emulsions are suitable for intravenous administration. In order to obtain information on their potential in vivo performance, it is important to find a simple and effective in vitro assay to evaluate the drug release behavior of such particles. Two in vitro methods were studied to measure the transfer of a lipophilic model drug from colloidal o/w emulsion droplets (donor) to liposomes (acceptor), which serve as model membranes mimicking cell membranes in the body. In the first method (column method) the acceptor particles were neutral unilamellar vesicles. In the second method (MLV method), multilamellar vesicles (MLV) were used as acceptor. The donor nanoemulsions were prepared by high pressure homogenization. Z-average particle size, polydispersity index and zeta potential were determined. The transfer of porphyrin was moderate to the acceptor MLV and rapid to the acceptor unilamellar vesicles. The amount of transferred porphyrin at the end of the experiment depended on the transfer method and the donor/acceptor ratio. With both acceptors the transfer of porphyrin stopped at a concentration lower than the theoretical equilibrium values. Many factors such as acceptor particle size and donor to acceptor lipid molar ratio affect the drug transfer from the donor particles to the different acceptors. Both methods seem to be suitable to study the drug transfer from such colloidal emulsion and the use of lipophilic acceptor particles is a better approach to the conditions in blood.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
SAFC
Sodium chloride solution, 5 M
SAFC
HEPES
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
SAFC
HEPES